
Enabling cross-library optimization and compile-time
error checking in the presence of procedural macros ∗

Andrew W. Keep R. Kent Dybvig
Indiana University

{akeep,dyb}@cs.indiana.edu

Abstract
Libraries and top-level programs are the basic units of portable
code in the language defined by the Revised6 Report on Scheme.
As such, they are naturally treated as compilation units, with source
optimization and certain forms of compile-time error checking oc-
curring within but not across library and program boundaries. This
paper describes a library-group form that can be used to turn a
group of libraries and optionally a top-level program into a single
compilation unit, allowing whole programs to be constructed from
groups of independent pieces and enabling cross-library optimiza-
tion and compile-time error checking. The paper also describes the
implementation, which is challenging partly because of the need to
support the use of one library’s run-time exports when another li-
brary in the same group is compiled. The implementation does so
without expanding any library in the group more than once, since
doing so is expensive in some cases and, more importantly, se-
mantically unsound in general. While described in the context of
Scheme, the techniques presented in this paper are applicable to
any language that supports both procedural macros and libraries,
and might be adaptable to dependently typed languages or tem-
plate meta-programming languages that provide full compile-time
access to the source language.

1. Introduction
A major difference between the language defined by the Revised6

Report on Scheme (R6RS) and earlier dialects is the structuring
of the language into a set of standard libraries and the provision
for programmers to define new libraries of their own [31]. New li-
braries are defined via a library form that explicitly names its
imports and exports. No identifier is visible within a library unless
explicitly imported into or defined within the library, so each library
essentially has a closed scope that, in particular, does not depend
on an ever-changing top-level environment as in earlier Scheme di-
alects. Furthermore, the exports of a library are immutable, both in
the exporting and importing libraries. The compiler (and program-
mer) can thus be certain that if cdr is imported from the standard
base library, it really is cdr and not a variable whose value might
change at run time. This is a boon for compiler optimization, since
it means that cdr can be open coded or even folded, if its arguments
are constants.

Another boon for optimization is that procedures defined in a li-
brary, whether exported or not, can be inlined into other procedures
within the library, since there is no concern that some importer of
the library can modify the value. For the procedures that a compiler
cannot or chooses not to inline, the compiler can avoid construct-

∗ Copyright c© 2010 Andrew Keep and R. Kent Dybvig. This research was
facilitated in part by a National Physical Science Consortium Fellowship
and by stipend support from the National Security Agency

ing and passing unneeded closures, bypass argument-count checks,
branch directly to the proper entry point in a case-lambda, and
perform other related optimizations [12].

Yet another benefit of the closed scope and immutable bindings
is that the compiler can often recognize most or all calls to a
procedure from within the library in which it is defined and verify
that an appropriate number of arguments is being passed to the
procedure, and it can issue warnings when it determines this is not
the case. If the compiler performs some form of type recovery [29],
it might also be able to verify that the types of the arguments are
correct, despite the fact that Scheme is a latently typed language.

The success of the library form can be seen by the number of
libraries that are already available [3]. Part of the success can be
traced to the portable library implementations produced by Van
Tonder [34] and Ghuloum and Dybvig [21]. The portable library
implementations form the basis for at least two R6RS Scheme
implementations [9, 19], and Ghuloum’s system is available on a
variety of R5RS Scheme implementations [18].

The library mechanism is specifically designed to allow sepa-
rate compilation of libraries, although it is generally necessary to
compile each library upon which a library depends before compil-
ing the library itself [17, 21]. Thus, it is natural to view each library
as a single compilation unit, and that is what existing implemen-
tations support. Yet separate compilation does not directly support
three important features:

• cross-library optimization, e.g., inlining, copy propagation,
lambda lifting, closure optimizations, type specialization, and
partial redundancy elimination;

• extension of static type checking across library boundaries; and
• the merging of multiple libraries (and possibly an application’s

main routine) into a single object file so that the distributed
program is self-contained and does not expose details of the
structure of the implementation.

This paper introduces the library-group form to support these
features. The library-group form allows a programmer to spec-
ify a set of libraries and an optional program to be combined as
a single compilation unit. Each library contained within the group
might or might not depend on other libraries in the group, and if
an application program is also contained within the group, it might
or might not depend on all of the libraries. In particular, additional
libraries might be included for possible use (via eval) when the
application is run. It does not require the programmer to restructure
the code. That is, the programmer can continue to treat libraries and
programs as separate entities, typically contained in separate files,
and the libraries and programs remain portable to systems that do
not support the library-group form. The library-group form
merely serves as a wrapper that groups existing libraries together
for purposes of analysis and optimization but has no other visible

effect. Even though the libraries are combined into a single object
file, each remains visible separately outside of the group.

For most languages, such a form would be almost trivial to im-
plement. In Scheme, however, the implementation is complicated
significantly by the fact that the compilation of one library can in-
volve the actual use of another library’s run-time bindings. That
is, as each library in a library group is compiled, it might require
another in the same group to be compiled and loaded. This need
arises from Scheme’s procedural macros. Macros are defined by
transformers that are themselves coded in Scheme. Macro uses are
expanded at compile time or, more precisely, expansion time, which
precedes compilation. If a macro used in one library depends on the
run-time bindings of another, the other must be loaded before the
first library can be compiled. This need arises even when libraries
do not export keyword (macro) bindings, although the export of
keywords can cause additional complications.

As with libraries themselves, the library-group implementa-
tion is entirely handled by the macro expander and adds no ad-
ditional burdens or constraints on the rest of the compiler. This
makes it readily adaptable to other implementations of Scheme and
even to implementations of other languages that support procedural
macros, now or in the future.

The rest of this paper is organized as follows. Section 2 provides
background about the library form and Ghuloum’s library imple-
mentation, which we use as the basis for describing our implemen-
tation. Section 3 introduces the library-group form, discusses
what the expander produces for a library group, and describes how
it does so. Section 4 illustrates when cross-library optimization is
be helpful. Sections 5 and 6 discuss related and future work, and
Section 7 presents our conclusions.

2. Background
This section describes R6RS libraries and top-level programs,
which are the building blocks for our library groups. It also covers
those aspects of Ghuloum’s implementation of libraries that are
relevant to our implementation of library groups.

2.1 Libraries and top-level programs
An R6RS library is defined via the library form, as illustrated by
the following trivial library.

(library (A)
(export fact)
(import (rnrs))
(define fact
(lambda (n)
(if (zero? n) 1 (* n (fact (- n 1)))))))

The library is named (A), exports a binding for the identifier fact,
and imports from the (rnrs) library. The (rnrs) library exports
bindings for most of the identifiers defined by R6RS, including
define, lambda, if, zero?, *, and -, which are used in the
example. The body of the library consists only of the definition
of the exported fact.

For our purposes1, library names are structured as lists of iden-
tifiers, e.g., (A), (rnrs), and (rnrs io simple). The import
form names one or more libraries. Together with the definitions in
the library’s body, the imported libraries determine the entire set
of identifiers visible within the library’s body. A library’s body can
contain both definitions and initialization expressions, with the def-
initions preceding the expressions. The identifiers defined within a

1 This description suppresses several details of the syntax, such as support
for library versioning, renaming of imports or exports, identifiers exported
indirectly via the expansion of a macro, and the ability to export other kinds
of identifiers, such as record names.

library are either run-time variables, defined with define, or key-
words, defined with define-syntax.

Exports are simply identifiers. An exported identifier can be
defined within the library, or it can be imported into the library
and reexported. In Scheme, types are associated with values, not
variables, so the export form does not include type information,
as it typically would for a statically typed language. Exported
identifiers are immutable. Library import forms cannot result in
cyclic dependencies, so the direct dependencies among a group of
libraries always form a directed acyclic graph (DAG).

The R6RS top-level program below uses fact from library (A)
to print the factorial of 5.

(import (rnrs) (A))
(write (fact 5))

All top-level programs begin with an import form listing the li-
braries upon which it relies. As with a library body, the only
identifiers visible within a top-level program’s body are those im-
ported into the program or defined within the program. A top-level-
program body is identical to a library body2.

The definitions and initialization expressions within the body of
a library or top-level program are evaluated in sequence. The defini-
tions can, however, be mutually recursive. The resulting semantics
can be expressed as a letrec*, which is a variant of letrec that
evaluates its right-hand-side expressions in order.

2.1.1 Library phasing
Figures 1, 2, and 3 together illustrate how the use of macros can
lead to the need for phasing between libraries. The (tree) library
implements a basic set of procedures for creating, identifying, and
modifying simple tree structures built using a tagged vector. Each
tree node has a value and list of children, and the library provides
accessors for getting the value of the node and the children. As with
library (A), (tree) exports only run-time (variable) bindings.

Library (tree constants) defines a macro that can be used
to create constant (quoted) tree structures and three variables bound
to constant tree structures. The quote-tree macro does not simply
expand into a set of calls to make-tree because that would create
(nonconstant) trees at run time. Instead, it directly calls make-tree
at expansion time to create constant tree structures. This sets up a
compile-time dependency for (tree constants) on the run-time
bindings of (tree).

Finally, the top-level program shown in Figure 3 uses the ex-
ports of both (tree) and (tree constants). Because it uses
quote-tree, it depends upon the run-time exports of both libraries
at compile time and at run time.

The possibility that one library’s compile-time or run-time ex-
ports might be needed to compile another library sets up a library
phasing problem that must be solved by the implementation. We
say that a library’s compile-time exports (i.e., macro definitions)
comprise its visit code, and its run-time exports (i.e., variable def-
initions and initialization expressions) comprise its invoke code.
When a library’s compile-time exports are needed (to compile an-
other library or top-level program), we say the library must be vis-
ited, and when a library’s run-time exports are needed (to compile
or run another library or top-level program), we say the library must
be invoked.

In the tree example, library (tree) is invoked when library
(tree constants) is compiled because the quote-tree forms
in (tree constants) cannot be expanded without the run-time
exports of (tree). For the same reason, library (tree) is in-

2 Actually, definitions and initialization expressions can be interleaved in a
top-level-program body, but this is a cosmetic difference of no importance
to our discussion.

(library (tree)
(export make-tree tree? tree-value
tree-children)

(import (rnrs))
(define tree-id #xbacca)
(define make-tree
(case-lambda
[() (make-tree #f ’())]
[(v) (make-tree v ’())]
[(v c) (vector tree-id v c)]))

(define tree?
(lambda (t)
(and (vector? t)

(eqv? (vector-ref t 0) tree-id))))
(define tree-value
(lambda (t) (vector-ref t 1)))

(define tree-children
(lambda (t) (vector-ref t 2))))

Figure 1. The (tree) library, which implements a tree data struc-
ture.

(library (tree constants)
(export quote-tree t0 t1 t2)
(import (rnrs) (tree))
(define-syntax quote-tree
(lambda (x)
(define q-tree-c
(lambda (x)
(syntax-case x ()
[(v c* . . .)
(make-tree #’v
(map q-tree-c #’(c* . . .)))]

[v (make-tree #’v)])))
(syntax-case x ()
[() #’(quote-tree #f)]
[(quote-tree v c* . . .)
#‘’#,(make-tree #’v

(map q-tree-c #’(c* . . .)))])))
(define t0 (quote-tree))
(define t1 (quote-tree 0))
(define t2 (quote-tree 1 (2 3 4) (5 6 7))))

Figure 2. The (tree constants) library, which defines a mech-
anism for creating constant trees and a few constant trees of its
own.

(import (rnrs) (tree) (tree constants))
(define tree->list
(lambda (t)
(cons (tree-value t)

(map tree->list (tree-children t)))))
(write (tree->list t0))
(write (tree->list t1))
(write (tree-value (car (tree-children t2))))
(write (tree->list (quote-tree 5 (7 9))))

Figure 3. A program using the (tree) and (tree constants)
libraries.

voked when the top-level program in Figure 3 is compiled. Library
(tree constants) is visited when the top-level program is com-
piled, because of the use of quote-tree. Finally, both libraries are
invoked when the top-level program is run because the run-time
bindings of both are used.

The tree example takes advantage of implicit phasing [21].
R6RS also allows an implementation to require explicit phase dec-
larations as part of the import syntax. The library-group form
described in this paper, and its implementation, are not tied to either
phasing model, so this paper has no more to say about the differ-
ences between implicit and explicit phasing.

2.2 Library implementation
The compiled form of a library consists of metadata, compiled
visit code, and compiled invoke code. The metadata represents
information about the library’s dependencies and exports, among
other things. The compiled visit code evaluates the library’s macro-
transformer expressions and sets up the bindings from keywords to
transformers. The compiled invoke code evaluates the right-hand-
sides of the library’s variable definitions, sets up the bindings from
variables to their values, and evaluates the initialization expres-
sions.

When the first import of a library is seen, a library manager lo-
cates the library, loads it, and records its metadata, visit code, and
invoke code in a library record data structure as illustrated for li-
braries (tree) and (tree constants) in Figure 4. The metadata
consists of the library’s name, a unique identifier (UID), a list of ex-
ported identifiers, a list of libraries that must be invoked before the
library is visited, and a list of libraries that must be invoked before
the library is invoked. The UID uniquely identifies each compila-
tion instance of a library and is used to verify that other compiled
libraries and top-level programs are built against the same com-
pilation instance. In general, when a library or top-level program
is compiled, it must be linked only with the same compilation in-
stance of an imported library. An example illustrating why this is
necessary is given in Section 3.3.

Subsequent imports of the same library do not cause the library
to be reloaded, although in our implementation, a library can be
reloaded explicitly during interactive program development.

Once a library has been loaded, the expander uses the library’s
metadata to determine the library’s exports. When a reference to
an export is seen, the expander uses the metadata to determine
whether it is a compile-time export (keyword) or run-time export
(variable). If it is a compile-time export, the expander runs the
library’s visit code to establish the keyword bindings. If it is a run-
time export, the expander’s action depends on the “level” of the
code being expanded. If the code is run-time code, the expander
merely records that the library or program being expanded has
an invoke requirement on the library. If the code is expand-time
code (i.e., code within a transformer expression on the right-hand-
side of a define-syntax or other keyword binding form), the
expander records that the library or program being expanded has
a visit requirement on the library, and the expander also runs the
library’s invoke code to establish its variable bindings and perform
its initialization.

Since programs have no exports, they do not have visit code and
do not need most of the metadata associated with a library. Thus, a
program’s representation consists only of invoke requirements and
invoke code, as illustrated at the top of Figure 4. In our implemen-
tation, a program record is never actually recorded anywhere, since
the program is invoked as soon as it is loaded.

As noted in Section 2.1, library and top-level program bodies
are evaluated using letrec* semantics. Thus, the invoke code
produced by the expander for a library or top-level program is
structured as a letrec*, as illustrated below for library (tree),

invoke code: <code>
 (tree constants)
invoke req: (rnrs), (tree),

Invoke
Code

name: (tree)
uid: <uid 3>

invoke code: <code>
visit code: <code>
invoke req: (rnrs)
visit req: (rnrs)

exports: make−tree, tree?,
 tree−value, tree−children

name: (tree constants)
uid: <uid 4>

invoke code: <code>
visit code: <code>

visit req: (rnrs), (tree)
invoke req:

 t2
exports: quote−tree, t0, t1,

Invoke
Code

Invoke
Code

Figure 4. Library records for the (tree) and (tree constants) libraries and a program record for our program.

with used to represent the definition right-hand-side expressions,
which are simply expanded versions of the corresponding source
expressions.

(letrec* ([make-tree]
[tree?]
[tree-value]
[tree-children])

(set-top-level! $make-tree make-tree)
(set-top-level! $tree? tree?)
(set-top-level! $tree-value tree-value)
(set-top-level! $tree-children tree-children))

If the library contained initialization expressions, they would ap-
pear just after the letrec* bindings. If the library contained unex-
ported variable bindings, they would appear in the letrec* along
with the exported bindings.

We refer to the identifiers $make-tree, $tree?, $tree-value,
and $tree-children as library globals. These are the handles by
which other libraries and top-level programs are able to access the
exports of a library. In our system, library globals are implemented
as ordinary top-level bindings in the sense of the Revised5 Report
on Scheme [23]. To avoid name clashes with other top-level bind-
ings and with other compilation instances of the library, library
globals are actually generated symbols (gensyms). In fact, the list
of exports is not as simple as portrayed in Figure 4, since it must
identify the externally visible name, e.g., make-tree, whether the
identifier is a variable or keyword, and, for variables, the generated
name, e.g., the gensym represented by $make-tree.

It would be possible to avoid binding the local names, e.g.,
make-tree, and instead directly set only the global names, e.g.,
$make-tree. Binding local names as well as global names enables
the compiler to perform the optimizations described in Section 1
involving references to the library’s exported variables within the
library itself. Our compiler is not able to perform such optimiza-
tions when they involve references to top-level variables, because
it is generally impossible to prove that a top-level variable’s value
never changes even with whole-program analysis due to the po-
tential use of eval. We could introduce a new class of immutable
variables to use as library globals, but this would cause problems
in our system if a compiled library is ever explicitly reloaded. It

is also easier to provide the compiler with code it already knows
how to optimize than to teach it how to deal with a new class of
immutable top-level variables.

3. The library-group form
Having now a basic understanding of how libraries work and how
they are implemented, we are ready to look at the library-group
form. This section describes the form, its usage, what the expander
should produce for the form, and how the expander does so. It also
describes a more portable variation of the expansion.

3.1 Usage
Both the (tree) and (tree constants) libraries are required
when the top-level program that uses them is run. If the program is
an application to be distributed, the libraries would have to be dis-
tributed along with the program. Because the libraries and program
are compiled separately, there is no opportunity for the compiler to
optimize across the boundaries and no chance for the compiler to
detect ahead of time if one of the procedures exported by (tree)
is used improperly by the program. The library-group form is
designed to address all of these issues.

Syntactically, a library-group form is a wrapper for a set of
library forms and, optionally, a top-level program. Here is how
it might look for our simple application, with used to indicate
portions of the code that have been omitted for brevity.

(library-group
(library (tree))
(library (tree constants))
(import (rnrs) (tree) (tree constants))
(define tree->list
(lambda (t)
(cons (tree-value t)

(map tree->list (tree-children t)))))
(write (tree->list t0))
(write (tree->list t1))
(write (tree-value (car (tree-children t2))))
(write (tree->list (quote-tree 5 (7 9)))))

The following grammar describes the library-group syntax:

library-group −→ (library-group lglib* lgprog)
| (library-group lglib*)

lglib −→ library | (include filename)
lgprog −→ program | (include filename)

where library is an ordinary R6RS library form and program is
an ordinary R6RS top-level program. A minor but important twist is
that a library or the top-level program, if any, can be replaced by an
include form that names a file containing that library or program3.
In fact, we anticipate this will be done more often than not, so
the existing structure of a program and the libraries it uses is not
disturbed. In particular, when include is used, the existence of the
library-group form does not interfere with the normal library
development process or defeat the purpose of using libraries to
organize code into separate logical units. So, our simple application
might instead look like:

(library-group
(include "tree .sls")
(include "tree/constants .sls")
(include "app .sps"))

In the general case, a library-group packages together a pro-
gram and multiple libraries. There are several interesting special
cases. In the simplest case, the library-group form can be empty,
with no libraries and no program specified, in which case it is com-
piled into nothing. A library-group form can also consist of
just the optional top-level program form. In this case, it is sim-
ply a wrapper for the top-level program it contains, as library is
a wrapper for libraries. Similarly, the library-group form can
consist of a single library form, in which case it is equivalent to
just the library form by itself. Finally, we can have just a list of
library forms, in which case the library-group form packages
together libraries only, with no program code.

A library-group form is not required to encapsulate all of the
libraries upon which members of the group depend. For example,
we could package together just (tree constants) and the top-
level program:

(library-group
(include "tree/constants .sls")
(include "app .sps"))

leaving (tree) as a separate dependency of the library group.
This is important since the source for some libraries might be
unavailable. In this case, a library group contains just those libraries
for which source is available. The final distribution can include
any separate, binary libraries. Conversely, a library-group form
can contain libraries upon which neither the top-level program (if
present) nor any of the other libraries explicitly depend, e.g.:

(library-group
(include "tree .sls")
(include "tree/constants .sls")
(include "foo .sls")
(include "app .sps"))

Even for whole programs packaged in this way, including an ad-
ditional library might be useful if the program might use eval to
access the bindings of the library at run time. This supports the
common technique of building modules that might or might not be
needed into an operating system kernel, web server, or other pro-
gram. The advantage of doing so is that the additional libraries be-
come part of a single package and they benefit from cross-library
error checking and optimization for the parts of the other libraries

3 An included file can actually contain multiple libraries or even one or more
libraries and a program, but we anticipate that each included file typically
contains just one library or program.

they use. The downside is that libraries included but never used
might still have their invoke code executed, depending on which
libraries in the group are invoked. This is the result of combining
the invoke code of all the libraries in the group. The programmer
has the responsibility and opportunity to decide what libraries are
profitable to include.

Apart from the syntactic requirement that the top-level program,
if present, must follow the libraries, the library-group form also
requires that each library be preceded by any other library in the
group that it imports. So, for example:

(library-group
(include "tree/constants .sls")
(include "tree .sls")
(include "app .sps"))

would be invalid, because (tree constants) imports (tree).
One or more appropriate orderings are guaranteed to exist because
R6RS libraries are not permitted to have cyclic import dependen-
cies.

The expander could determine an ordering based on the import
forms (including local import forms) it discovers while expanding
the code. We give the programmer complete control over the order-
ing, however, so that the programmer can resolve dynamic depen-
dencies that arise from invoke-time calls to eval. Another solution
would be to reorder only if necessary, but we have so far chosen
not to reorder so as to maintain complete predictability.

Libraries contained within a library-group form behave like
their standalone equivalents, except that the invoke code of the
libraries is fused4. Fusing the code of the enclosed libraries and
top-level program facilitates compile-time error checking and op-
timization across the library and program boundaries. If compiled
to a file, the form also produces a single object file. In essence,
the library-group form changes the basic unit of compilation
from the library or top-level program to the library-group form,
without disturbing the enclosed (or included) libraries or top-level
programs.

A consequence of fusing the invoke code is that the first time
a library in the group is invoked, the libraries up to and including
that library are invoked as well, along with any side effects doing so
might entail. In cases where all of the libraries in the group would
be invoked anyway, such as when a top-level program that uses
all of the libraries is run, this is no different from the standalone
behavior.

Fusing the invoke code creates a more subtle difference between
grouped and standalone libraries. The import dependencies of a
group of R6RS libraries must form a DAG, i.e., must not involve
cycles. An exception is raised at compile time for static cyclic
dependencies and at run time for dynamic cyclic dependencies that
arise via eval. When multiple libraries are grouped together, a
synthetic cycle can arise, just as cycles can arise when arbitrary
nodes in any DAG are combined. We address the issue of handling
dynamic cycles in more depth in the next subsection.

3.2 Anticipated expander output
This section describes what we would like the expander to produce
for the library-group form and describes how the expander deals
with import relationships requiring one library’s run-time exports
to be available for the expansion of another library within the group.

As noted in Section 2, the explicit import dependencies among
libraries must form a directed acyclic graph (DAG), and as shown
in Section 2.2, the invoke code of each library expands indepen-
dently into a letrec* expression. This leads to an expansion of
library-group forms as nested letrec* forms, where each li-

4 Visit code is not fused as there is no advantage in doing so.

(letrec* ([tree-id]
[make-tree]
[tree?]
[tree-value]
[tree-children])

(set-top-level! $make-tree make-tree)
(set-top-level! $tree? tree?)
(set-top-level! $tree-value tree-value)
(set-top-level! $tree-children tree-children)
(letrec* ([t0]

[t1]
[t2])

(set-top-level! $t0 t0)
(set-top-level! $t1 t1)
(set-top-level! $t2 t2)
(letrec* ([tree->list

(lambda (t)
(cons ($tree-value t)
(map tree->list
($tree-children t))))])

(write (tree->list $t0))
(write (tree->list $t1))
(write (tree-value

(car (tree-children $t2))))
(write (tree->list (quote tree constant))))))

Figure 5. A nested letrec* for our library group, with indi-
cating code that has been omitted for brevity.

brary expands to a letrec* form containing the libraries following
it in the group. The code for the top-level program is nested inside
the innermost letrec* form. Libraries are nested in the order pro-
vided by the programmer in the library-group form.

Figure 5 shows the result of this nesting of letrec* forms
for the first library group defined in Section 3.1. This is a good
first cut. The references to each library global properly follows
the assignment to it, which remains properly nested within the
binding for the corresponding local variable. Unfortunately, this
form does not allow the compiler to analyze and optimize across
library boundaries, because the inner parts of the letrec* nest
refer to the global rather than to the local variables.

To address this shortcoming, the code must be rewired to refer to
the local variables instead, as shown in Figure 6. With this change,
the invoke code of the library group now forms a single compilation
unit for which cross-library error checking and optimization is
possible.

Another issue remains. Loading a library group should not au-
tomatically execute the shared invoke code. To address this issue,
the code is abstracted into a separate procedure, p, called from the
invoke code stored in each of the library records. Rather than run-
ning the embedded top-level-program code, p returns a thunk that
can be used to run that code. This thunk is ignored by the library
invoke code, but it is used to run the top-level program when the
library group is used as a top-level program. The procedure p for
the tree library group is shown in Figure 7.

Unfortunately, this expansion can lead to synthetic cycles in the
dependency graph of the libraries. Figure 8 shows three libraries
with simple dependencies: (C) depends on (B) which in turn
depends on (A).

We could require the programmer to include library (B) in the
library group, but a more general solution that does not require this
is preferred. The central problem is that (B) needs to be run after
the invoke code for library (A) is finished and before the invoke
code for library (C) has started. This can be solved by marking

(letrec* ([tree-id]
[make-tree]
[tree?]
[tree-value]
[tree-children])

(set-top-level! $make-tree make-tree)
(set-top-level! $tree? tree?)
(set-top-level! $tree-value tree-value)
(set-top-level! $tree-children tree-children)
(letrec* ([t0]

[t1]
[t2])

(set-top-level! $t0 t0)
(set-top-level! $t1 t1)
(set-top-level! $t2 t2)
(letrec* ([tree->list

(lambda (t)
(cons (tree-value t)
(map tree->list
(tree-children t))))])

(write (tree->list t0))
(write (tree->list t1))
(write (tree-value

(car (tree-children t2))))
(write (tree->list (quote tree constant))))))

Figure 6. A nested letrec* for our library group, with library-
global references replaced by local-variable references.

(lambda ()
(letrec* ([tree-id]

[make-tree]
[tree?]
[tree-value]
[tree-children])

(set-top-level! $make-tree make-tree)
(set-top-level! $tree? tree?)
(set-top-level! $tree-value tree-value)
(set-top-level! $tree-children tree-children)
(letrec* ([t0]

[t1]
[t2])

(set-top-level! $t0 t0)
(set-top-level! $t1 t1)
(set-top-level! $t2 t2)
(lambda ()
(letrec* ([tree->list

(lambda (t)
(cons (tree-value t)
(map tree->list
(tree-children t))))])

(write (tree->list t0))
(write (tree->list t1))
(write (tree-value

(car (tree-children t2))))
(write (tree->list

(quote tree constant))))))))

Figure 7. The final invoke code expansion target.

(library (A)
(export x)
(import (rnrs))
(define x 5))

(library (B)
(export y)
(import (rnrs) (A))
(define y (+ x 5)))

(library (C)
(export z)
(import (rnrs) (B))
(define z (+ y 5)))

Figure 8. Three simple libraries, with simple dependencies

(library-group (library (A)) (library (C)))

Figure 9. A library-group form containing (A) and (C)

(lambda ()
(letrec* ([x 5])
(set-top-level! $x x)
($mark-invoked! ’A)
($invoke-library ’(B) ’() ’B)
(letrec* ([z (+ y 5)])
(set-top-level! $z z)
($mark-invoked! ’C))))

Figure 10. Expansion of library group marking (A) as invoked
and invoking (B)

(lambda (uid)
(letrec* ([x 5])
(set-top-level! $x x)
($mark-invoked! ’A)
(let ([nested-lib

(lambda (uid)
($invoke-library ’(B) ’() ’B)
(letrec* ([z (+ y 5)])
(set-top-level! $z z)
($mark-invoked! ’C)
(let ([nested-lib values])
(if (eq? uid ’C)

nested-lib
(nested-lib uid)))))])

(if (eq? uid ’A)
nested-lib
(nested-lib uid)))))

Figure 11. Final expansion for correct library groups

library (A) as invoked once its invoke code is complete and ex-
plicitly invoking (B) before (C)’s invoke code begins. Figure 10
shows what this invoke code might look like.

This succeeds when (A) or (C) are invoked first, but results in
a cycle when (B) is invoked first. Effectively, the library group
invoke code should stop once (A)’s invoke code has executed.
Wrapping each library in a lambda that takes the UID of the library
being invoked accomplishes this. When a library group is invoked,
the UID informs the invoke code where to stop and returns any
nested library’s surrounding lambda as the restart point. Figure 11
shows this corrected expansion of the library group containing (A)
and (C). The invoke code for an included program would replace
the innermost nested-lib, and be called when #f is passed in
place of the UID.

(let
([p (let

([proc
(lambda (uid)

(letrec* ([tree-id]
[make-tree]
[tree?]
[tree-value]
[tree-children])

(set-top-level! $make-tree make-tree)

($mark-invoked! ’tree)
(let ([nested-lib

(lambda (uid)
(letrec* ([t0]

[t1]
[t2])

(set-top-level! $t0 t0)

($mark-invoked! ’constants)
(let ([nested-lib

(lambda (uid)
($invoke-library

’(tree constants)
’() ’constants)

($invoke-library
’(tree) ’() ’tree)

(letrec*
([tree->list])

))])
(if (eq? uid ’constants)

nested-lib
(nested-lib uid)))))])

(if (eq? uid ’tree)
nested-lib
(nested-lib uid)))))])

(lambda (uid) (set! proc (proc uid))))])
($install-library ’(tree) ’() ’tree

’(#[libreq (rnrs) (6) $rnrs]) ’() ’()
void (lambda () (p ’tree)))

($install-library ’(tree constants) ’() ’constants
’(#[libreq (tree) () tree]

#[libreq (rnrs) (6) $rnrs])
’(#[libreq (tree) () tree]) ’()
(lambda ()

(set-top-level! $quote-tree))
(lambda () (p ’constants)))

(p #f))

Figure 13. Final expansion of the tree library group

Beyond the issues in the invoke code, we would also like to en-
sure that libraries in the group are properly installed into the library
manager. For the most part, libraries in the group can be handled
like standalone libraries. Metadata and visit code is installed into
the library manager as normal. The invoke code is the only twist.
We would like to ensure that each library in the library group is
invoked only once, the first time it or one of the libraries below
it in the group is invoked. Thus, each library is installed with the
shared invoke procedure described above. Figure 12 shows how
our library records are updated from Figure 4 to support the shared
invoke code. Figure 13 shows this final expansion for our tree li-
brary group. If the optional program were not supplied, the call to
the p thunk at the bottom would be omitted. When the optional
program is supplied, it always executes when the library group is
loaded. Programmers wishing to use the library group separately
can create two versions of the library group, one with the top-level
program and one without.

shared
invoke
code

name: (tree)
uid: <uid 3>

invoke code: <code>
visit code: <code>
invoke req: (rnrs)
visit req: (rnrs)

exports: make−tree, tree?,
 tree−value, tree−children

invoke code: <code>
 (tree constants)
invoke req: (rnrs), (tree),

name: (tree constants)
uid: <uid 4>

invoke code: <code>
visit code: <code>

visit req: (rnrs), (tree)
invoke req:

 t2
exports: quote−tree, t0, t1,

Figure 12. Library and program records for the library group, showing the shared invoke code run when either of the libraries are invoked
or when the top-level program is run.

3.3 Implementation
A major challenge in producing the residual code shown in the
preceding section is that the run-time bindings for one library might
be needed while compiling the code for another library in the
group. A potential simple solution to this problem is to compile
and load each library before compiling the next in the group.
This causes the library (and any similar library) to be compiled
twice, but that is not a serious concern if the compiler is fast or
if the library-group form is used only in the final stage of an
application’s development to prepare the final production version.

Unfortunately, this simple solution does not work because the
first compilation of the library may be fatally incompatible with the
second. This can arise for many reasons, all having to do ultimately
with two facts. First, macros can change much of the nature of
a library, including the internal representations used for its data
structures and even whether an export is defined as a keyword or
as a variable. Second, since macros can take advantage of the full
power of the language, the transformations they perform can be
affected by the same things that affect run-time code, including, for
example, information in a configuration file, state stored elsewhere
in the file system by earlier uses of the macro, or even a random
number generator.

For example, via a macro that flips a coin, e.g., checks to see
if a random number generator produces an even or odd answer,
the (tree) library might in one case represent trees as tagged
lists and in another as tagged vectors. If this occurs, the constant
trees defined in the (tree constants) library and in the top-
level program would be incompatible with the accessors used at
run time. While this is a contrived and whimsical example, such
things can happen and we are obligated to handle them properly

in order to maintain consistent semantics between separately com-
piled libraries and libraries compiled as part of a library group.

On the other hand, we cannot entirely avoid compiling the code
for a library whose run-time exports are needed to compile another
part of the group if we are to produce the run-time code we hope
to produce. The solution is for the expander to expand the code
for each library only once, as it is seen, just as if the library were
compiled separately from all of the other libraries. If the library
must be invoked to compile another of the libraries or the top-level
program, the expander runs the invoke code through the rest of the
compiler and evaluates the result. Once all of the libraries and the
top-level program have been expanded, the expander can merge and
rewrite the expanded code for all of the libraries to produce the
code described in the preceding section, then allow the resulting
code to be run through the rest of the compiler. Although some of
the libraries might be put through the rest of the compiler more than
once, each is expanded exactly once. Assuming that the rest of the
compiler is deterministic, this prevents the sorts of problems that
arise if a library is expanded more than once.

In order to perform this rewiring, the library must be abstracted
slightly so that a mapping from the exported identifiers to the
lexical variables can be maintained. With this information the code
can be rewired to produce the code in Figure 13.

Since a library’s invoke code might be needed to expand an-
other library in the group, libraries in the group are installed as
standalone libraries during expansion and are then replaced by the
library group for run time. This means that the invoke code for a
library might be run twice in the same Scheme session, once dur-
ing expansion and once during execution. Multiple invocations of
a library are permitted by the R6RS. Indeed, some implementa-
tions always invoke a library one or more times at compile time

and again at run time in order to prevent state set up at compile
time from being used at run time.

This implementation requires the expander to walk through
expanded code converting library-global references into lexical-
variable references. Expanded code is typically in some compiler-
dependent form, however, that the expander would not normally
need to traverse, and we might want a more portable solution to this
problem. One alternative to the code walk is to wrap the expanded
library in a lambda expression with formal parameters for each
library global referenced within the library.

4. Empirical Evaluation
One of the goals of the library-group form is to enable cross-
library optimizations to take place. Optimizations like procedure
inlining are known to result in significant performance bene-
fits [36]. By using the library-group form, a program enables a
compiler that supports these optimizations to apply them across li-
brary boundaries. This section characterizes the types of programs
we expect to show performance benefits. Even when there are no
performance benefits, programs still benefit from the single binary
output file and cross-library compile-time error checking.

In general, programs and libraries with many cross-library pro-
cedure calls are expected to benefit the most. As an example, imag-
ine a compiler where each pass is called only once and is defined
in its own library. Combining these libraries into a library group is
unlikely to yield performance benefits, since the number of cross-
library procedure calls is relatively small. If the passes of this com-
piler use a common record structure to represent code, however,
and a library of helpers for decomposing and reconstructing these
records, combining the compiler pass libraries and the helper li-
brary into a single library group can benefit compiler performance
significantly.

To illustrate when performance gains are expected, we present
two example libraries, both written by Eduardo Cavazos and tested
in Chez Scheme Version 8.0 [12]. The first program [8] imple-
ments a set of tests for the “Mathematical Pseudo Language” [10,
11] (MPL), a symbolic math library. The second uses a library
for indexable sequences [7] to implement a matrix multiply algo-
rithm [13].

Many small libraries comprise the MPL library. Each basic
mathematical function, such as +, /, and cos, uses pattern matching
to decompose the mathematical expression passed to it to select
an appropriate simplification, if one exists. The pattern matcher,
provided by another library [14], avoids cross-library calls, since it
is implemented entirely as a macro. Thus, most of the work for each
function is handled within a single library. The main program tests
each algorithm a handful of times. Compiling the program with
the library-group form showed only a negligible performance
gain. This example typifies programs that are unlikely to improve
performance with the library-group form. Since computation is
mostly performed within libraries, the optimizer has little left to
optimize across the library boundaries.

The matrix multiply example uses a vector-for-each func-
tion providing the loop index to its procedure argument, from
the indexable-sequence library. The library abstracts standard data
structure iteration functions that provide constructors, accessors,
and a length function. The matrix multiply function makes three
nested calls to vector-for-each-with-index resulting in many
cross-library calls. Combining matrix multiply with the indexable-
sequence library allows the optimizer to inline these cross-library
procedure calls. A test program calls matrix multiply on 50 x 50,
100 x 100, and 500 x 500 matrices. Using the library-group
form results in a 30% speed-up over the separately compiled ver-
sion.

In both of our example programs the difference in time between
compiling the program as a set of individual libraries and as a single
library-group is negligible.

5. Related work
Packaging code into a single distributable is not a new problem, and
previous dialects of Scheme needed a way to provide a single bi-
nary for distribution. Our system, PLT Scheme, and others provide
mechanisms for packaging up and distributing collections of com-
piled libraries and programs. These are packaging facilities only
and do not provide the cross-library optimization or compile-time
error checking provided by the library-group form.

Ikarus [19] uses Waddell’s source optimizer [35, 36] to perform
some of the same interprocedural optimizations as our system. In
both systems, these optimizations previously occurred only within
a single compilation unit, e.g., a top-level expression or library. The
library-group form allows both to perform cross-library and
even whole-program optimization. The Stalin [30] Scheme com-
piler supports aggressive whole-program optimization when the
whole program is presented to it, but it does not support R6RS li-
braries or anything similar to them. If at some point it does support
R6RS libraries, the library-group form would be a useful addi-
tion. MIT Scheme [22] allows the programmer to mark a procedure
inlinable, and inlining of procedures so marked occurs across file
boundaries. MIT Scheme does not support R6RS libraries, and in-
lining, while important, is only one of many optimizations enabled
when the whole program is made available to the compiler. Thus, as
with Stalin, if support for R6RS libraries is added to MIT Scheme,
the library-group form would be a useful addition.

Although the library-group mechanism is orthogonal to the
issue of explicit versus implicit phasing, the technique we use to
make a library’s run-time bindings available both independently at
compile time and as part of the combined library-group code is
similar to techniques Flatt uses to support separation of phases [16].

Outside the Scheme community several other languages, such
as Dylan, ML, Haskell, and C++, make use of library or module
systems and provide some form of compile-time abstraction fa-
cility. Dylan is the closest to Scheme, and is latently typed with
a rewrite-based macro system [27]. Dylan provides both libraries
and modules, where libraries are the basic compilation unit and
modules are used to control scope. The Dylan community also rec-
ognizes the benefits of cross-library inlining, and a set of common
extensions allow programmers to specify when and how functions
should be inlined. By default the compiler performs intra-library in-
lining, but may-inline and inline specify the compiler may try
to perform inter-library inlining or that a function should always be
inlined even across library boundaries.

The Dylan standard does not include procedural macros, so
run-time code from a Dylan library does not need to be made
available at compile time, but such a facility is planned [15] and at
least one implementation exists [5]. When this feature is added to
existing Dylan implementations, an approach similar to that taken
by the library-group might be needed to enable cross-library
optimization.

ML functors provide a system for parameterizing modules
across different type signatures, where the types needed at compile
time are analogous to Scheme macros. The MLton compiler [37]
performs whole program compilation for ML programs and uses
compile-time type information to specialize code in a functor. Since
this type information is not dependent on the run-time code of other
modules, it does not require a module’s run-time code to be avail-
able at compile time. If the type system were extended to support
dependent types, however, some of the same techniques used in the
library-group form may be needed. Additionally, MetaML [32]
adds staging to ML, similar to the phasing in Scheme macros. Since

MetaML does not allow run-time procedures to be called in its tem-
plates though, it does not have the same need to make a module’s
run-time code available at compile time.

The Glasgow Haskell Compiler [1] (GHC) provides support
for cross-module inlining [33] as well as compile-time meta-
programming through Template Haskell [28]. Thus, GHC achieves
some of the performance benefits of the library-group form in
a language with similar challenges, without the use of an explicit
library-group form. A Haskell version of the library-group
form would still be useful for recognizing when an inlining can-
didate is singly referenced and for enabling other interprocedural
optimizations. It would likely be simpler to implement due to the
lack of state at compile time.

The template system of C++ [2, 4] provides a Turing-complete,
compile-time abstraction facility, similar to the procedural macros
found in Scheme. The language of C++ templates is distinct from
C++, and run-time C++ code cannot be used during template ex-
pansion. If the template language were extended to allow C++ tem-
plates to call arbitrary C++ code, compilation might need to be han-
dled similar to the way the library-group form is handled.

Another approach to cross-library optimizations is link-time op-
timization of object code. Several different approaches to this tech-
nique exist and are beginning to be used in compilers like GCC [26]
and compiler frameworks like LLVM [24]. Instead of performing
procedure inlining at the source level, these optimizers take object
code produced by the compiler and perform optimization when the
objects are linked. The GOld [6] link-time optimizer applies similar
techniques to optimize cross-module calls when compiling Gambit-
C Scheme code into C. Our decision to combine libraries at the
source level is motivated by the fact that our system and others al-
ready provide effective source optimizers that can be leveraged to
perform cross-library optimization.

6. Future work
The library-group form is designed to allow programmers the
greatest possible flexibility in determining which libraries to in-
clude in a library group and the order in which they should be in-
voked. This level of control is not always necessary, and we en-
vision a higher-level interface to the library-group form that
would automatically group a program with its required libraries and
automatically determine an appropriate invocation order based only
on static dependencies.

The library-group form ensures that all exports for libraries
in the library group are available outside the library group. In cases
where a library is not needed outside the library group, we would
like to allow their exports to be dropped, so that the compiler can
eliminate unused code and data. This would help reduce program
bloat in cases where a large utility library is included in a program
and only a small part of it is needed. We envision an extended ver-
sion of the library-group form that specifies a list of libraries
that should not be exported. The compiler should still, at least op-
tionally, register unexported libraries in order to raise an exception
if they are used outside the library group.

Our current implementation of the library-group form can
lead to libraries being invoked that are not required, based on the or-
dering of libraries in the group. It is possible to invoke libraries only
as they are required by using a more intricate layout of library bind-
ings, similar to the way letrec and letrec* are currently han-
dled [20]. This expansion would separate side-effect free expres-
sions in a library from those with side-effects, running the effectful
expressions only when required. This approach would require other
parts of the compiler be made aware of the library-group form,
since the expander does not have all the information it needs to
handle this effectively.

7. Conclusion
The library-group form builds on the benefits of R6RS libraries
and top-level programs, allowing a single compilation unit to be
created from a group of libraries and an optional top-level program.
Packaging the run-time code in a single compilation unit and wiring
the code together so that each part of the library group references
the exports of the others via local variables allows the compiler to
perform cross-library optimization and extends compile-time error
checking across library boundaries. It also allows the creation of
a single output binary. The implementation is designed to deliver
these benefits without requiring the compiler to do any more than
it already does. In this way it represents a non-invasive feature that
can be more easily incorporated into existing Scheme compilers.

While this work was developed in the context of Scheme, we
expect the techniques described in this paper will become useful as
other languages adopt procedural macro systems. The PLOT lan-
guage [25], which shares an ALGOL-like syntax with Dylan al-
ready provides a full procedural macro system, and a similar sys-
tem has been proposed for Dylan [15]. The techniques described in
this paper might also be useful for languages with dependent-type
systems that allow types to be expressed in the full source language
or template meta-programming systems that allow templates to be
defined using the full source language.

Acknowledgments
Aaron Hsu first suggested that we support cross-library optimiza-
tion and error checking, and Michael Lenaghan first suggested that
we support the ability to create applications that consist of a sin-
gle object file combining an application program and libraries. The
desire to take both suggestions led naturally to the development
of the library-group form, which accomplishes both simultane-
ously. Comments from the reviewers lead to improvements in the
presentation.

References
[1] The Glasgow Haskell Compiler. URL http://www.haskell.org/

ghc/.
[2] ISO/IEC 14882:2003: Programming languages: C++. 2003.

URL http://www.iso.org/iso/en/CatalogueDetailPage.
CatalogueDetail?CSNUMBER=38110.

[3] Scheme Libraries. URL http://launchpad.net/
scheme-libraries.

[4] D. Abrahams and A. Gurtovoy. C++ Template Metaprogram-
ming: Concepts, Tools, and Techniques from Boost and Beyond
(C++ in Depth Series). Addison-Wesley Professional, 2004. ISBN
0321227255.

[5] J. Bachrach. D-Expressions: Lisp power, Dylan style, 1999. URL
http://people.csail.mit.edu/jrb/Projects/dexprs.pdf.

[6] D. Boucher. GOld: a link-time optimizer for Scheme. In Proceedings
of the Workshop on Scheme and Functional Programming, 2000.

[7] E. Cavazos. Dharmalab git repository, . URL http:
//github.com/dharmatech/dharmalab/tree/master/
indexable-sequence/.

[8] E. Cavazos. MPL git repository, . URL http://github.com/
dharmatech/mpl.

[9] W. D. Clinger, 2008. The Larceny Project.
[10] J. S. Cohen. Computer Algebra and Symbolic Computation: Elemen-

tary Algorithms. A. K. Peters, Ltd., Natick, MA, USA, 2002. ISBN
1568811586.

[11] J. S. Cohen. Computer Algebra and Symbolic Computation: Mathe-
matical Methods. A. K. Peters, Ltd., Natick, MA, USA, 2002. ISBN
1568811594.

[12] R. K. Dybvig. Chez Scheme Version 8 User’s Guide. Cadence
Research Systems, 2009.

[13] R. K. Dybvig. The Scheme Programming Language. MIT Press, fourth
edition, 2009.

[14] D. Eddington. Xitomatl bazaar repository. URL https://code.
launchpad.net/~derick-eddington/scheme-libraries/
xitomatl.

[15] N. Feinberg, S. E. Keene, R. O. Mathews, and P. T. Withington. Dylan
programming: an object-oriented and dynamic language. Addison
Wesley Longman Publishing Co., Inc., Redwood City, CA, USA,
1997. ISBN 0-201-47976-1.

[16] M. Flatt. Composable and compilable macros: You want it when? In
ICFP ’02: Proceedings of the Seventh ACM SIGPLAN International
Conference on Functional Programming, pages 72–83, 2002. URL
http://doi.acm.org/10.1145/581478.581486.

[17] A. Ghuloum. Implicit phasing for library dependencies. PhD thesis,
Indiana University, Indianapolis, IN, USA, 2008. Adviser-Dybvig, R.
Kent.

[18] A. Ghuloum. R6RS Libraries and syntax-case system, Octo-
ber 2007. URL http://ikarus-scheme.org/r6rs-libraries/
index.html.

[19] A. Ghuloum, Sept. 2007. Ikarus (optimizing compiler for Scheme),
Version 2007-09-05.

[20] A. Ghuloum and R. K. Dybvig. Fixing letrec (reloaded). In Proceed-
ings on the Workshop on Scheme and Functional Programming, 2009.

[21] A. Ghuloum and R. K. Dybvig. Implicit phasing for R6RS libraries.
SIGPLAN Not., 42(9):303–314, 2007. ISSN 0362-1340. doi: http:
//doi.acm.org/10.1145/1291220.1291197.

[22] C. Hanson. Mit scheme user’s manual, July 2001. URL
http://groups.csail.mit.edu/mac/ftpdir/scheme-7.
5/7.5.17/doc-html/user.html.

[23] R. Kelsey, W. Clinger, and J. R. (eds.). Revised5 report on the algo-
rithmic language Scheme. Higher-Order and Symbolic Computation,
11(1):7–105, 1998. Also appears in ACM SIGPLAN Notices 33(9),
September 1998.

[24] C. Lattner and V. Adve. LLVM: a compilation framework for lifelong
program analysis & transformation. In CGO ’04: Proceedings of
the international symposium on Code generation and optimization,
page 75, Washington, DC, USA, 2004. IEEE Computer Society. ISBN
0-7695-2102-9.

[25] D. A. Moon. Programming Language for Old Timers, 2009. URL
http://users.rcn.com/david-moon/PLOT/.

[26] T. G. Project. Link-Time Optimization in GCC: Requirements and
high-level design, November 2005.

[27] A. Shalit. The Dylan reference manual: the definitive guide to the
new object-oriented dynamic language. Addison Wesley Longman
Publishing Co., Inc., Redwood City, CA, USA, 1996. ISBN 0-201-
44211-6. URL http://www.opendylan.org/books/drm/.

[28] T. Sheard and S. P. Jones. Template meta-programming for Haskell.
In Haskell ’02: Proceedings of the 2002 ACM SIGPLAN workshop
on Haskell, pages 1–16, New York, NY, USA, 2002. ACM. ISBN
1-58113-605-6. doi: http://doi.acm.org/10.1145/581690.581691.

[29] O. G. Shivers. Control-flow analysis of higher-order languages. PhD
thesis, Pittsburgh, PA, USA, 1991.

[30] J. M. Siskind. Flow-directed lightweight closure conversion. Techni-
cal Report Technical Report 99-190R, NEC Research Institute, Inc.,
December 1999.

[31] M. Sperber, R. K. Dybvig, M. Flatt, and A. van Straaten (eds.).
Revised6 report on the algorithmic language Scheme, September
2007. URL http://www.r6rs.org/.

[32] W. Taha and T. Sheard. MetaML and multi-stage programming with
explicit annotations. Theor. Comput. Sci., 248(1-2):211–242, 2000.
ISSN 0304-3975. doi: http://dx.doi.org/10.1016/S0304-3975(00)
00053-0.

[33] T. G. Team. The Glorious Glasgow Haskell Compilation System
User’s Guide, version 6.12.1. URL http://www.haskell.org/
ghc/docs/latest/html/users_guide/.

[34] A. van Tonder. R6RS Libraries and macros, 2007. URL http:
//www.het.brown.edu/people/andre/macros/.

[35] O. Waddell. Extending the scope of syntactic abstraction. PhD thesis,
Indiana University, 1999.

[36] O. Waddell and R. K. Dybig. Fast and effective procedure inlining.
In SAS ’97: Proceedings of the 4th International Symposium on Static
Analysis, pages 35–52, London, UK, 1997. Springer-Verlag. ISBN
3-540-63468-1.

[37] S. Weeks. Whole-program compilation in MLton. In ML ’06: Pro-
ceedings of the 2006 workshop on ML, pages 1–1, New York, NY,
USA, 2006. ACM. ISBN 1-59593-483-9. doi: http://doi.acm.org/10.
1145/1159876.1159877.

