
Optimizing Closures in O(0) time

Andrew W. Keep
Cisco Systems, Inc.
Indiana Univeristy
akeep@cisco.com

Alex Hearn
Indiana University

adhearn@cs.indiana.edu

R. Kent Dybvig
Cisco Systems, Inc.
Indiana University
dyb@cisco.com

Abstract

The flat-closure model for the representation of first-class proce-
dures is simple, safe-for-space, and efficient, allowing the values
or locations of free variables to be accessed with a single memory
indirect. It is a straightforward model for programmers to under-
stand, allowing programmers to predict the worst-case behavior of
their programs. This paper presents a set of optimizations that im-
prove upon the flat-closure model along with an algorithm that im-
plements them, and it shows that the optimizations together elimi-
nate over 50% of run-time closure-creation and free-variable access
overhead in practice, with insignificant compile-time overhead. The
optimizations never add overhead and remain safe-for-space, thus
preserving the benefits of the flat-closure model.

1. Introduction

First-class procedures, i.e., indefinite extent procedural objects that
retain the values of lexically scoped variables, were incorporated
into the design of the Scheme programming language in 1975
and within a few years started appearing in functional languages
such as ML. It has taken many years, but they are fast becoming
commonplace, with their inclusion in contemporary languages such
as JavaScript and newer versions of other languages such as C# and
Perl.

First-class procedures are typically represented at run time as clo-
sures. A closure is a first-class object encapsulating some represen-
tation of a procedure’s code (e.g., the starting address of its machine
code) along with some representation of the lexical environment. In
1983, Cardelli [? ] introduced the notion of flat closures. A flat clo-
sure resembles a vector, with a code slot plus one slot for each free
variable1. The code slot holds a code pointer, which might be the
address of a block of machine code implementing the procedure,
or it might be some other representation of code, such as byte code
in a virtual machine. The free-variable slots each hold the value
of one free variable. Because the same variable’s value might be
stored simultaneously in one or more closures and also in the origi-
nal location in a register or stack, mutable variables are not directly

1 In this context, free variables are those referenced within the body of a
procedure but not bound within the procedure.

Copyright c© 2012 Andrew W. Keep, Alex Hearn, and R. Kent Dybvig

supported by the flat-closure model. In 1987, Dybvig [? ] addressed
this for languages, like Scheme, with mutable variables by adding
a separate assignment conversion step that converts the locations
of assigned variables (but not unassigned variables) into explicit
heap-allocated boxes, thereby avoiding problems with duplication
of values.

Flat closures have the useful property that each free variable (or lo-
cation, for assigned variables) is accessible with a single indirect.
This compares favorably with any mechanism that requires traver-
sal of a nested environment structure. The cost of creating a flat
closure is proportional to the number of free variables, which is of-
ten small. When not, the cost is more than compensated for by the
lower cost of free-variable reference, in the likely case that each
free variable is accessed at least once and possibly many times.
Flat closures also hold onto no more of the environment than the
procedure might require and so are “safe for space” [? ]. This is
important because it allows the storage manager to reclaim storage
from the values of variables that are visible in the environment but
not used by the procedure.

This paper describes a set of optimizations of the flat-closure model
that reduce closure-creation costs and eliminate memory operations
without losing the useful features of flat closures. It also sketches
an algorithm that performs the optimizations. These optimizations
never do any harm, i.e., they never add allocation overhead or mem-
ory operations relative to a naive implementation of flat closures.
Thus, a programmer can count on at least the performance of the
straight flat-closure model, and most likely better. The algorithm
adds a small amount of compile-time overhead during closure con-
version, but since it produces less code, the overhead is more than
made up for by the reduced overhead in later passes of the compiler,
hence the facetious title of this paper.

A key contribution of this work is the detailed description of the
optimizations and their relationships. While a few of the optimiza-
tions have long been performed by our compiler, descriptions of
them have never been published. Various closure optimizations
have been described by others [? ? ? ? ? ? ? ? ], but most of the
optimizations described here have not been described previously in
the literature, and many are likely novel.

The remainder of this paper is organized as follows. Section ??
describes the optimizations, and Section ?? sketches an algorithm
that implements them. Section ?? provides a brief, preliminary em-
pirical analysis of the optimizations. Section ?? describes related
work, and Section ?? presents our conclusions.

2. The Optimizations

The closure optimizations described in this section collectively
act to eliminate some closures and reduce the sizes of others.
When closures are eliminated in one section of the program, the



optimizations can cascade to further optimizations that allow other
closures to be eliminated or reduced in size. They also sometimes
result in the selection of alternate representations that occupy fewer
memory locations. In most cases, they also reduce the number of
indirects required to access free variables. The remainder of this
section presents each optimization in turn, grouped by direct effect:

• avoiding unnecessary closures (Section ??),
• eliminating unnecessary free variables (Section ??), and
• sharing closures (Section ??).

A single algorithm that implements all of the optimizations de-
scribed in this section is provided in Section ??.

2.1 Avoiding unnecessary closures

A flat closure contains a code pointer and a set of free-variable
values. Depending on the number of free variables and whether
the code pointer is used, we can sometimes eliminate the closure,
sometimes allocate it statically, and sometimes represent it more
efficiently. We consider first the case of well-known procedures.

Case 1: Well-known procedures

A procedure is known at a call site if the call site provably invokes
that procedure’s λ-expression and only that λ-expression. A well-
known procedure is one whose value is never used except at call
sites where it is known. The code pointer of a closure for a well-
known procedure need never be used because, at each point where
the procedure is called, the call can jump directly to the entry
point for the procedure via a direct-call label associated with the
λ-expression.

Depending on the number of free variables, we can take advantage
of this as follows.

Case 1a: Well-known with no free variables

If the procedure has no free variables, and its code pointer is never
used, the closure itself is entirely useless and can be eliminated.

Case 1b: Well-known with one free variable x

If the procedure has one free variable, and its code pointer is never
used, the only useful part of the closure is the free variable. In this
case, the closure can be replaced with the free variable everywhere
that it is used.

Case 1c: Well-known with two free variables x and y

If the procedure has two free variables, and its code pointer is never
used, it contains only two useful pieces of information, the values
of the two free variables. In this case, the closure can be replaced
with a pair. In our implementation, pairs occupy just two words
of memory, while a closure with two free variables occupies three
words.

Case 1d: Well-known with three or more free variables x ...

If the procedure has three or more free variables, but its code
pointer is never used, we can choose to represent it as a closure
or as a vector. The size in both cases is the same: one word for each
free variable plus one additional word. The additional word for the
closure is a code pointer, while the additional word for the vector is
an integer length. This choice is a virtual toss-up, although storing
a small constant length is slightly cheaper than storing a full-word
code pointer, especially on 64-bit machines. We choose the vector
representation for this reason and because it helps us share closures,
as described in Section ??.

We now turn to the case where the procedure is not well known.

Case 2: Not-well-known procedures

In this case, the procedure’s value might be used at a call site where
the procedure is not known. That call site must jump indirectly
through the closure’s code pointer, as it does not know the direct-
call label or labels of the closures that it might call. In this case, the
code pointer is needed, and a closure must be allocated.

We consider two subcases:

Case 2a: Not well-known with no free variables

In this case, the closure is the same each time the procedure’s λ-
expression is evaluated, as it contains only a static code pointer. The
closure can thus be allocated statically and treated as a constant.

Case 2b: Not well-known with one or more free variables x ...

In this case, a closure must be created at run time.

2.2 Eliminating unnecessary free variables

On the surface, it seems that a closure needs to hold the values
of all of its free variables. After all, if a variable occurs free in
a procedure’s λ-expression, it might be referenced, barring dead
code that should have been eliminated by some earlier pass of the
compiler. Several cases do arise, however, in which a free variable
is not needed.

Case 1: Unreferenced free variables

Under normal circumstances, a variable cannot be free in a λ-
expression if it is not referenced there (or assigned, prior to assign-
ment conversion). This case can arise after free-variable analysis
has been performed, however, by the elimination of a closure under
Case 1a of Section ??. Call sites that originally passed the closure
to the procedure do not do so when the closure is eliminated, and
because no other references to a well-known procedure’s name ap-
pear in the code, the variable should be removed from any closures
in which it appears.

Case 2: Global variables

The locations of global variables, i.e., variables whose locations are
fixed for an entire program run, need not be included in a closure,
as the address of the location can be incorporated directly in the
code stream, with appropriate support from the linker.

Case 3: Variables bound to constants

If a variable is bound to a constant, references to it can be replaced
with the constant (via constant propagation), and the binding can
be eliminated, e.g.:

(let ([x 3])
(letrec ([f (lambda () x)])

))

can be rewritten as:

(letrec ([f (lambda () 3)])
)

If this transformation is performed in concert with the other opti-
mizations described in this section, a variable bound to a constant
can be removed from the sets of free variables in which it appears.

Our compiler performs this sort of transformation prior to closure
optimization, but this situation can also arise when a closure is allo-
cated statically and treated as a constant by Case 2a of Section ??.
For structured data, such as closures, care should also be taken to
avoid replicating the actual structure when the variable is refer-
enced at multiple points within its scope. Downstream passes of



f . . .fv fv1 nf: Code

f: Code . . .fv fv1 n

Figure 1. Function f with a self-reference in its closure

our compiler guarantee that this is the case, in cooperation with the
linker, effectively turning the closure into a constant.

Case 4: Aliases

A similar transformation can take place when a variable x is bound
directly to the value of another variable y, e.g.:

(let ([x y])
(letrec ([f (lambda () x)])

))

can be rewritten (via copy propagation) as:

(letrec ([f (lambda () y)])
)

This transformation would not necessarily be valid if either x or
y were assigned, but we assume that assignment conversion has
already been performed.

In cases where both x and y are free within the same λ-expression,
we can remove x and leave just y. For example, x and y both appear
free in the λ-expression bound to f :

(let ([x y])
(letrec ([f (lambda () (x y))])

))

Yet, if references to x are replaced with references to y, only y
should be retained in the set of free variables.

Again, our compiler eliminates aliases such as this in a pass that
runs before closure optimization. Nevertheless, this situation can
arise as a result of Case 1b of Section ??, in which a closure for
a well-known procedure with one free variable is replaced by its
single free variable. It can also arise as the result of closure sharing,
as discussed in Section ??
Case 5: Self-references

A procedure that recurs directly to itself through the name of the
procedure has its own name as a free variable. For example, the
λ-expression in the code for f below has f as a free variable:

(define append
(lambda (ls1 ls2)

(letrec ([f (lambda (ls1)
(if (null? ls1)

ls2
(cons (car ls1)

(f (cdr ls1) ls2))))])
(f ls1))))

From the illustration of the closure in Figure ??, it is clear that
this self-reference is unnecessary. If we already have f ’s closure in
hand, there is no need to follow the indirect to find it. In general,
a link at a known offset from the front of any data structure that
always points back to itself is unnecessary and can be eliminated.

Code

Code

even?:

odd?:

odd?

even?

Code

Code

even?:

odd?:

Figure 2. Mutual references for even? and odd?

Code

Code

even?:

odd?:

odd?

even?

z

Figure 3. Mutual references for the even? and odd? closures, with
z free in even?.

Thus, a procedure’s name need not appear in its own list of free
variables.

Case 6: Unnecessary mutual references

A similar situation arises when two or more procedures are mu-
tually recursive and have only the variables of one or more of the
others as free variables. For example, in:

(letrec ([even? (lambda (x)
(or (= x 0)

(odd? (- x 1))))]
[odd? (lambda (x) (not (even? x)))])

)

even? has odd? as a free variable only to provide odd? its closure
and vice versa. Neither is necessary. This situation is illustrated in
Figure ??.

In contrast, in the modified version below:

(lambda (z)
(letrec ([even? (lambda (x)

(or (= x z)
(odd? (- x 1))))]

[odd? (lambda (x) (not (even? x)))])
))

z is free in even?, so even? does need its closure to hold z, and
odd? needs its closure to hold even?. This situation is illustrated
in Figure ??.

2.3 Sharing closures

If a set of closures cannot be eliminated, they possibly can be
shared. For example, in the second even? and odd? example of
Section ??, we could use a single closure for both even? and odd?.
The combined closure would have just one free variable, z, as the
pointer from odd? to even? would become a self-reference and,
thus, be unnecessary. Further, when even? calls odd?, it would
just pass along the shared closure rather than indirecting its own to
obtain odd?’s closure. The same savings would occur when odd?
calls even?.



There are three challenges, however. First, our representation of
closures does not have space for multiple code pointers. This can
be addressed with support from the storage manager, although not
without some difficulty.

Second, more subtly, if two procedures have different lifetimes,
some of the free-variable values might be retained longer than
they should be. In other words, the representation is no longer
“safe for space” [? ]. This problem does not arise if either (a) the
procedures have the same lifetime, or (b) the set of free variables
(after removing mutually recursive references) is the same for all
of the procedures.

Third, even more subtly, if two procedures have different lifetimes,
but the same set of free variables, and one or more are not-well-
known, one of the code pointers might be retained longer than
necessary. In systems where all code is static, this is not a problem,
but our compiler generates code on the fly, e.g., when the eval
procedure is used; and anything that can be dynamically allocated
must be subject to garbage collection, including code. This is not a
problem when each of the procedures is well-known, assuming that
we choose the vector representation over the closure representation
in Case 1d of Section ??.

Thus, we can share closures in the following two cases:

Case 1: Same lifetime, single code pointer

Without extending our existing representation to handle multiple
code pointers, we can use one closure for any set of procedures that
have the same lifetime, as long as, at most, one of them requires its
code pointer. Proving that two or more procedures have the same
lifetime is difficult in general, but it is always the case for sets of
procedures where a call from one can lead directly or indirectly to
a call to each of the others, i.e., sets that are strongly connected [?
] in a graph of bindings linked by free-variable relationships.

Case 2: Same free variables, no code pointers

If a set of well-known procedures all have the same set of free vari-
ables, the procedures can share the same closure, even when they
are not part of the same strongly connected group of procedures.
No harm is done if one outlasts the others, as the shared closure
directly retains no more than what each of the original closures
would have indirectly retained. In determining this, we can ignore
variables that name members of the set, as these will be eliminated
as self-references in the shared closure.

In either case, sharing can result in aliases that can lead to reduc-
tions in the sizes of other closures (Case 4 of Section ??).

2.4 Example

Consider the letrec expression in the following program:

(lambda (x)
(letrec ([f (lambda (a) (a x))]

[g (lambda () (f (h x)))]
[h (lambda (z) (g))]
[q (lambda (y) (+ (length y) 1))])

(q (g))))

As the first step in the optimization process, we identify the free
variables for the procedures defined in the letrec: x is free in f ; x,
f , and h are free in g; and g is free in h. q contains no free variables.
We do not consider + or length to be free in q, as the locations of
global variables are stored directly in the code stream, as discussed
in Case 2 of Section ??. Additionally, we note that f , g, h, and q are
all well-known.

Next, we partition the bindings into strongly connected compo-
nents, producing one letrec expression for each [? ? ]. g and h are

mutually recursive, and, thus, must be bound by the same letrec
expression, while f and q each get their own. Since f appears in g,
the letrec that binds f must appear outside the letrec that binds
g and h. Since q neither depends on nor appears in the other pro-
cedures, we can place its letrec expression anywhere among the
others. We arbitrarily choose to make it the outermost letrec.

After these partitions we have the following program:

(lambda (x)
(letrec ([q (lambda (y) (+ (length y) 1))])

(letrec ([f (lambda (a) (a x))])
(letrec ([g (lambda () (f (h x)))]

[h (lambda (z) (g))])
(q (g))))))

We can now begin the process of applying optimizations. Since q is
both well-known and has no free variables, its closure can be com-
pletely eliminated (Case 1a of Section ??). f is a well-known proce-
dure and has only one free variable, x, so its closure is just x (Case
1b of Section ??). g and h are mutually recursive, so it is tempting
to eliminate both closures, as described by Case 6 of Section ??.
However, g still has x as a free variable, and, therefore, needs its
closure. h also needs its closure so that it can hold g. Because g
and h are well-known and are part of the same strongly connected
component, they can share a closure (Case 1 of Section ??). Ad-
ditionally, since f ’s closure has been replaced by x, there is only a
single free variable, x, so the closures for g and h are also just x
(Case 1b of Section ??). If another variable, y, were free in one of g
or h, the result would be a shared closure represented by a pair of x
and y (Case 1c of Section ??). If, further, g were not-well-known, a
shared closure for g and h would have to be allocated with the code
pointer for g and x and y as its free variables (Case 1 of Section ??).

3. The Algorithm

We perform all of the closure optimizations described in Section ??
using a single algorithm, sketched below:

1. Gather information about the input program, including the free
variables of each λ-expression and whether each λ-expression
is well-known.

2. Partition the bindings of each input letrec expression into
separate sets of bindings known to have the same lifetimes, i.e.,
sets of strongly connected bindings.

3. When one or more bindings of a strongly connected set of
bindings is well-known (i.e., they are bindings for well-known
procedures), decide which should share a single closure.

4. Determine the required free variables for each closure, leaving
out those that are unnecessary.

5. Select the appropriate representation for each closure and
whether it can share space with a closure from some outer
strongly connected set of bindings.

6. Rebuild the code based on these selections.

The algorithm handles only pure letrec expressions, i.e., those
whose left-hand sides are unassigned variables and whose right-
hand sides are λ-expressions. Thus, we require that some form of
letrec purification [? ? ] has already been performed.

4. Results

Our implementation extends the algorithm described in Section ??
to support the ful R6RS Scheme Language [? ]. To determine the



effectiveness of closure optimization, we ran the optimization over
a starndard set of 67 R6RS benchmarks [? ].

Overall the optimziation performs well, on average statically elim-
inating 56.94% of closures and 44.89% of the total free variables
and dynamically eliminating, on average, 58.25% of the allocation
and 58.58% of the memory references attributable to closure ac-
cess. We hope to provide a full break down of these numbers, along
with a break down of the effects of the individual parts of this in a
future version of this paper.

5. Related Work

Our replacement of a well-known closure with a single free vari-
able is a degenerate form of lambda lifting [? ], in which each of
the free variables of a procedure are converted into separate argu-
ments. Increasing the number of arguments can lead to additional
stack traffic, particularly for non-tail-recursive routines, and it can
increase register pressure whenever two or more variables are live
in place of the original single package (closure) with two or more
slots. Limiting our algorithm to doing this replacement only in the
single-variable case never does any harm, as we are replacing a
single package of values with just one value.

Serrano:cfa describes a closure optimization based on control-flow
analysis [? ]. His optimization eliminates the code part of a closure
when the closure is well-known; in this, our optimizations overlap,
although our benefit is less, as the code part of a closure in his
implementation occupies four words, while ours occupies just one.
He also performs lambda lifting when the closure is well-known
and its binding is in scope wherever it is called.

steckler:lightweight describe a closure-conversion algorithm that
creates “light-weight closures” that do not contain free variables
that are available at the call site. This is a limited form of lambda
lifting and, as with full lambda lifting, can sometimes do harm
relative to the straight flat-closure model.

kranz:orbit describes various mechanisms for reducing closure al-
location and access costs, including allocating closures on the stack
and allocating closures in registers. The former is useful for clo-
sures created to represent continuations in an implementation that
uses a continuation-passing style [? ] and achieves part of the ben-
efit of the natural reuse of stack frames in a direct-style implemen-
tation. The latter is useful for procedures that act as loops and re-
duces the need to handle loops explicitly in the compiler. Our opti-
mizations are orthogonal to these optimizations, but they do overlap
somewhat in their benefits.

Shao:2000 describe a nested representation of closures that can
reduce the amount of storage required for a set of closures that share
some but not all free variables, while maintaining space safety. The
sharing never results in more than one level of indirection to obtain
the value of a free variable. Because a substantial portion of the
savings reported resulted from global variables [? ], which we omit
entirely, and we operate under the assumption that free-variable
references are typically far more common than closure creation, we
have chosen to stick with the flat-closure model and focus instead
on optimizing that model.

Fradet:1991:CFL:114005.102805 describe various optimizations
for implementations of lazy languages. They discuss reducing the
size of a closure by omitting portions of the environment not needed
by a procedure, which is an inherent feature of the flat-closure
model preserved by our mechanism. They also discuss avoiding
the creation of multiple closures when expressions are deferred by
the lazy-evaluation mechanism in cases where a closure’s environ-
ment, or portions of it, can be reused when the evaluation of one

expression provably precedes another, i.e., when the lifetime of one
closure ends before the lifetime of another begins.

LAMP-CONF-2008-004 describes a set of optimizations aimed at
reducing the overhead of higher-order functions in Scala. A closure
elimination optimization is included that attempts to determine
when free variables are available at the call site or on the stack
to avoid creating a larger class structure around the function. The
optimization also looks for heap-allocated free variables that are
reachable from local variables or the stack to avoid adding them to
the closure. The optimization helps eliminate the closures for well-
known calls by lambda lifting, if possible.

appelCompilingWithContinuationsCh10 describes eliminating self-
references and allowing mutually recursive functions (strongly
connected sets of letrec bindings) to share a single closure with
multiple code pointers. These optimizations are similar to our elim-
ination of self-references and sharing of well-known closures, al-
though in our optimization we allow only one not-well-known clo-
sure in a shared closure.

A few of the optimizations described in this paper have been per-
formed by Chez Scheme since 1992: elimination of self-references,
elimination of mutual references where legitimate, and allocation
of constant closures (though without the propagation of those con-
stants). Additionally, we have seen references, in various news-
groups and blogs, to the existence of similar optimizations. While
other systems may implement some of the optimizations that we
describe, there is no mention of them, or an algorithm to imple-
ment them, in the literature.

6. Conclusion

The flat-closure model is a simple and efficient representation for
procedures that allows the values or locations of free variables to
be accessed with a single memory reference. This paper presented
a set of flat-closure compiler optimizations and an algorithm for
implementing them. Together, the optimizations result in an av-
erage reduction in run-time closure-creation and free-variable ac-
cess overhead on a set of standard benchmarks by over 50%, with
insignificant compile-time overhead. The optimizations never add
overhead, so a programmer can safely assume that a program will
perform at least as well with the optimizations as with a naive im-
plementation of flat closures.


