
Ftypes: Structured foreign types

Andrew W. Keep R. Kent Dybvig
Indiana University

{akeep,dyb}@cs.indiana.edu

Abstract
High-level programming languages, like Scheme, typically repre-
sent data in ways that differ from the host platform to support
consistent behavior across platforms and automatic storage man-
agement, i.e., garbage collection. While crucial to the program-
ming model, differences in data representation can complicate in-
teraction with foreign programs and libraries that employ machine-
dependent data structures that do not readily support garbage col-
lection. To bridge this gap, many high-level languages feature for-
eign function interfaces that include some ability to interact with
foreign data, though they often do not provide complete control
over the structure of foreign data, are not always fully integrated
into the language and run-time system, and are often not as effi-
cient as possible. This paper describes a Scheme syntactic abstrac-
tion for describing foreign data, a set of operators for interacting
with that data, and an implementation that together provide a com-
plete, well integrated, and efficient solution for handling structured
data outside the Scheme heap.

1. Introduction
A foreign function interface (FFI) provides a way for program-
mers using a high-level language, such as Scheme, to call func-
tions written in other languages, through the application binary in-
terface (ABI). This is a convenient way for a language implementor
to provide access to existing libraries, in particular system libraries,
without providing explicit support for each library. An FFI often al-
lows calls from functions written in other languages into functions
written in the high-level language. This allows programs written
in a high-level language to interact with functions written in other
languages that provide an interface through the ABI, like C, FOR-
TRAN, or higher-level languages. In addition to calling foreign
procedures, or allowing procedures to be called from foreign code,
a facility for interacting with foreign data is also needed. The high-
level language typically represents data differently from the host
platform for consistency across platforms and to support garbage
collection. In addition to interacting with foreign data created by
foreign code, a foreign data facility should also provide access to
foreign data resulting from devices on the machine, e.g. DMA data
mapped into the address space of a user program. Essentially, a
general facility for managing arbitrary data outside the high-level
language’s heap is desired.

This paper describes a convenient Scheme syntactic abstraction
for declaring the structure of foreign data, a set of operators for
allocating and manipulating that data, and an efficient implemen-
tation. The syntax supports all C data structures, including struct,
union, array, pointer, function, bit-field, and scalar types, e.g. char,
int, double. It also provides a way to define type aliases. Overall, it
is reminiscent of C’s typedef, although it goes beyond typedef
in allowing the specification of endianness and packing. The fields
of an ftype can be accessed individually, or the entire structure can
be converted into an s-expression representation for use in Scheme.

When accessing scalar elements within an ftype, the value of the
scalar is automatically marshaled into the equivalent Scheme rep-
resentation. When setting scalar elements, the Scheme value is
checked to ensure compatibility with the specified foreign type, and
then marshaled into the equivalent foreign representation. Ftypes
are well integrated into the system, with compiler support for ef-
ficient access to foreign data and debugger support for convenient
inspection of foreign data.

The ftype syntax is convenient and flexible. While it is similar in
some ways to foreign data declarations in other Scheme implemen-
tations, and language design is largely a matter of taste, we believe
our syntax is cleaner and more intuitive than most. Our system also
has a more complete set of features, covering all C data types along
with support for packed and unpacked data structures and speci-
fying endianness. The implementation produces efficient code with
minimal overhead for accesses and assignments of foreign data, and
it appears to be unique in this regard based on systems described in
the literature.

The remainder of this paper is organized as follows. Section 2
describes the syntax of ftypes and gives examples of their use. Sec-
tions 3 and 4 describe the implementation and its status. Section 5
discusses related work. Section 6 discuses future work and conclu-
sions.

2. Using Ftypes
We start with a contrived example that demonstrates several ftype
forms. The fun-type ftype is an example of a function ftype, and
the x-type ftype includes the full variety of ftype forms.

(define-ftype fun-type (function (size t) void*))

(define-ftype x-type
(struct

[a (union
[s (array 4 integer-16)]
[i (endian big (array 2 integer-32))]
[d (endian little double)])]

[b (bits
[x signed 4]
[y unsigned 4]
[z signed 3]
[ signed 5])]

[c (packed
(struct

[ch char]
[ integer-8]
[us unsigned-16]))]

[f (* fun-type)]
[next (* x-type)]))

The fun-type defines a function with a size t argument that
returns a void*. The x-type defines a struct ftype with five fields.
The a field is a 64-bit union that can be accessed as an array of



four 16-bit integers through the s field, an array of two big-endian
32-bit integers through the i field, or a single little-endian double
value through the d field. The b field is a 16-bit long bit-field split
into the 4-bit signed x field, 4-bit unsigned y field, and 3-bit signed
z field. It also includes five bits of padding. The syntax is used
to represent a field that exists only for padding. Padding is needed
because fields of the bits form must total 8, 16, 32, or 64 bits. The
need to explicitly specify padding up to the size of the container is
one way that ftype definitions differ from their C equivalents, where
this is managed implicitly. The c field specifies a packed struct with
a single character field ch and an unsigned-16 field us. Since the
c struct is packed, it is not automatically padded to align us on a 16-
bit boundary. One byte of padding is explicitly specified to ensure
us is aligned. The f field is a pointer to a fun-type. Finally, the
next field points to an x-type.

Ftype pointers for the fun-type and x-type are created with
make-ftype-pointer.

(define my-f
(make-ftype-pointer fun-type "malloc"))

(define my-x
(make-ftype-pointer x-type
(foreign-alloc

(ftype-sizeof x-type))))

Here, the space pointed to by my-x is allocated from Scheme with
foreign-alloc. The foreign-alloc function allocates memory
outside the Scheme heap and is similar to C’s malloc function. An
ftype pointer can also be the result of calling a foreign function, or
might point to a fixed address in memory, such as one mapped for
a device.

The ftype-pointer? predicate can identify an object as an
ftype and verify that an ftype pointer has a specified ftype.

(ftype-pointer? my-f) ⇒ #t
(ftype-pointer? my-x) ⇒ #t
(ftype-pointer? x-type my-x) ⇒ #t
(ftype-pointer? x-type my-f) ⇒ #f

The fields of my-x can also be set.

(ftype-set! x-type (a d) my-x 2 .5)
(ftype-set! x-type (b x) my-x -3)
(ftype-set! x-type (b y) my-x 4)
(ftype-set! x-type (b z) my-x -1)
(ftype-set! x-type (c ch) my-x #\a)
(ftype-set! x-type (c us) my-x 100)
(ftype-set! x-type (f) my-x my-f)
(ftype-set! x-type (next) my-x

(make-ftype-pointer x-type 0))

Once set, these values can be referenced.

(ftype-ref x-type (a i 1) my-x) ⇒ 1088
(ftype-ref x-type (b x) my-x) ⇒ -3
(ftype-ref x-type (b y) my-x) ⇒ 4
(ftype-ref fun-type () my-f) ⇒ #<procedure>

The ftype-&ref operation computes a pointer into an ftype struc-
ture, effectively providing controlled pointer arithmetic. The mem-
ory address can also be accessed with ftype-pointer-address.

(define my-int16
(ftype-&ref x-type (a s 3) my-x))

my-int16 ⇒ #<ftype-pointer #x9DA7B36>
(ftype-ref integer-16 () my-int16) ⇒ 16388
(ftype-pointer-address my-int16) ⇒ #x9DA7B36
(ftype-pointer-address my-x) ⇒ #x9DA7B30

In addition to accessing elements of my-x individually, the entire
structure can be converted to an s-expression.

(ftype-pointer->sexpr my-x) ⇒
(struct
[a (union

[s (array 4 0 0 0 16388)]
[i (array 2 0 1088)]
[d 2 .5])]

[b (bits
[x -3]
[y 4]
[z -1]
[ ])]

[c (struct
[ch #\a]
[ ]
[us 100])]

[f (* (function " libc malloc"))]
[next null])

The ftype-pointer-ftype operation retrieves the specification
of the ftype.

(ftype-pointer-ftype my-f) ⇒
(function (size t) void*)
(ftype-pointer-ftype my-x) ⇒
(struct
[a (union

[s (array 4 integer-16)]
[i (endian big (array 2 integer-32))]
[d (endian little double)])]

[b (bits
[x signed 4]
[y unsigned 4]
[z signed 3]
[ signed 5])]

[c (packed
(struct
[ch char]
[ integer-8]
[us unsigned-16]))]

[f (* fun-type)]
[next (* x-type)])

2.1 Ftype Syntax
Formally, ftypes are defined using the following syntax.

(define-ftype ftype-name ftype)
(define-ftype (ftype-name ftype) ...)

The first form defines a single ftype, while the second form allows
more than one ftype to be defined simultaneously. The second
form allows mutually recursive structures to be defined. An ftype
is specified by the following grammar.

ftype −→ manifest-ftype
| (function conv (arg-type ...) result-type)
| (function (arg-type ...) result-type)

manifest-ftype −→ ftype-name
| (struct (field-name manifest-ftype) ...)
| (union (field-name manifest-ftype) ...)
| (array length manifest-ftype)
| (* ftype)
| (bits (field-name signedness bits) ...)
| (packed manifest-ftype)
| (unpacked manifest-ftype)
| (endian endianness manifest-ftype)



The function form specifies a function type, with a list of argu-
ment types in (arg-type ...) and the result type in result-type. Ar-
gument and result types can be pointers to ftypes or scalar ftypes.
Passing structs, unions, or functions by value is not currently sup-
ported. The optional conv specifies the calling conventions. It can
be #f or a symbol specifying a machine-dependent calling conven-
tion. A conv of #f indicates the default conventions should be used.
Function types can appear only at the top level of an ftype defini-
tion or within a (* ftype) form. The struct, union, and array
forms correspond to their C equivalents. The * indicates a pointer
type. The bits form specifies a bit field. It differs slightly from a
C bit-field, in that the field layout is explicit. The total must be 8,
16, 32, or 64 bits. The packed form specifies no padding should
be added to fields of a struct. This allows programmers to pre-
cisely control the layout of an ftype. The unpacked form specifies
fields of a struct should be padded for alignment following the
application binary interface (ABI) for the platform. In general, this
matches the memory layout used by the C compiler. This is the de-
fault when packed is not specified. The endian form specifies the
endianness to use when accessing or setting a field. The endianness
can be one of native, big, or little.

The make-ftype-pointer operation has the following form.

(make-ftype-pointer ftype-name entry-expr)

The ftype-name must be a valid ftype name. The entry-expr must
be an exact integer representing a memory address, a string, or a
procedure. String and procedure arguments are allowed only when
the ftype specified by ftype-name is a function ftype. When it is
a string, make-ftype-pointer attempts to look up the entry to
a foreign function by this name. If found, the resulting entry is
stored as the memory address of the ftype pointer. When entry-expr
is a procedure, a new foreign-callable code object is created. The
code object allows the procedure to be called from foreign code.
Once created, the code object is locked, and the address of the
foreign entry point is stored in the ftype pointer. This prevents
the garbage collector from relocating or removing the code object,
allowing foreign code to safely call it at the recorded memory
address. Code objects can be retrieved by passing the ftype pointer
address to foreign-callable-code-object and unlocked with
unlock-object. This allows the code object to be collected, but it
should be re-locked if it is passed to foreign code again.

The ftype-sizeof operation returns the size of an ftype. This
can be useful when allocating space for a new ftype pointer with
foreign-alloc.

(ftype-sizeof ftype-name)

ftype-name must be a valid, non-function, ftype. The size of func-
tion ftypes cannot be determined since the function ftype specifica-
tion does not provide information about the size of the function’s
code in memory.

Ftype pointers are differentiated from other Scheme objects.
The ftype-pointer? predicate identifies when an object is an
ftype.

(ftype-pointer? expr)
(ftype-pointer? ftype-name expr)

The first form is true when expr is an ftype pointer. The second
form checks that the ftype of expr matches the one specified by
ftype-name.

The ftype-ref form references an element of an ftype pointer.

(ftype-ref ftype-name (a ...) fptr-expr)
(ftype-ref ftype-name (a ...) fptr-expr index)

The ftype-name must name a valid ftype. (a ...) specifies a list
of accessors leading to a scalar, pointer, or function element of

the named ftype. The accessors list can include fields named in
the ftype, * representing pointer dereferencing, or a fixnum-valued
expression representing array access. Pointer fields can be treated
as arrays using a fixnum expression to reference elements from
the start of pointer. Unlike array fields, accessing elements of a
pointer cannot be bounds checked, since the number of elements
is unknown. Elements of constituent ftypes or elements pointed to
by the ftype can also be specified in the accessor list. For instance,
the double stored in the second element of an x-type linked list
can be accessed as follows.

(ftype-ref x-type (next * a d) my-x)

The fptr-expr specifies the ftype pointer to be referenced. The
index, when included, allows an ftype pointer to be treated as a
variable length array. Similar to fixnum access of pointer elements,
it cannot be bounds checked, since the length of the array is un-
known.

When the referenced element is a scalar, ftype-ref returns
the Scheme representation of the value. For instance, a char or
wchar field returns a Scheme character, a double field returns
a flonum, and an int field returns either a fixnum or bignum,
depending on the size of the int. When the referenced element is
a pointer, ftype-ref returns a new ftype pointer to this element.
When a function element is referenced, ftype-ref returns a new
procedure, allowing the foreign function to be called.

The ftype-&ref form is similar to ftype-ref, but always
returns an ftype pointer. When a scalar or function element is
referenced, an ftype-pointer with the element’s memory address is
created. This can be used to perform pointer arithmetic. When the
index is specified, ftype-&ref treats the fptr-expr as a variable
length array, returning an ftype pointer to the indexed element.

(ftype-&ref ftype-name (a . . .) fptr-expr)
(ftype-&ref ftype-name (a . . .) fptr-expr index)

Values in ftypes can be set using the ftype-set! form.

(ftype-set! ftype-name (a . . .) fptr-expr val-expr)
(ftype-set! ftype-name (a . . .) fptr-expr index val-expr)

ftype-name, (a . . .), fptr-expr, and index are the same as those
used by ftype-ref and ftype-&ref, though only scalar and
pointer elements of an ftype can be set. The val-expr is the Scheme
value to assign to the specified element. The type of the value is
checked to ensure it is compatible with the specified foreign type
and then marshaled into a foreign representation. If the field speci-
fies non-native endianness, the byte ordering is swapped appropri-
ately.

The ftype-pointer-ftype operation retrieves the specifica-
tion of the ftype, while the ftype-pointer-address retrieves the
ftype-pointer’s memory address.

(ftype-pointer-ftype fptr-expr)
(ftype-pointer-address fptr-expr)

The ftype-pointer->sexpr operator converts an ftype pointer
into an s-expression.

(ftype-pointer->sexpr fptr-expr)

It uses information about the ftype to determine the structure of
the data, marshaling scalar values into Scheme representations,
following pointers, and looking up foreign-procedure entry names,
when possible. If an invalid pointer is encountered, invalid is
recorded in the resulting s-expression. If the data is cyclic, a cyclic
s-expression will be created that mimics this structure. Generally,
this is useful for debugging, but can also be used to create an
s-expression copy of the data for Scheme to use, though if this



data is to be heavily used, a more efficient representation might
be preferred.

2.2 A Networking Example
The C network library uses a variety of structures to support fea-
tures like converting an IP address to an integer representation or
looking up a DNS entry to find its associated IP addresses.

The inet pton and inet ntop functions convert a string rep-
resentation of an IP address into an integer representation and back.
Both functions use the in addr structure, which can be defined as
an ftype as follows.1

(define-ftype in addr
(struct
[addr in addr t]))

The specification for in addr t is as follows.

(define-ftype in addr t unsigned-32)

The in addr t is an unsigned 32-bit integer on our host plat-
form.2 The inet pton and inet ntop functions have the follow-
ing types.

(define-ftype pton-t
(function (int string (* in addr)) int))

(define-ftype ntop-t
(function (int (* in addr) (* char) int) string))

Both functions require a pointer to an in addr structure. Both
functions also use the string type. This is a convenience scalar
type for functions that work with C’s null terminated ASCII strings.
In addition to the string type there are also u8*, u16*, and u32*
types for representing UNICODE in 8, 16, and 32-bit encodings.
These types are not supported directly as ftype scalar types, but can
be created by pointers to 8, 16, or 32 bit unsigned integers. An ftype
pointer to an in addr can be created using make-ftype-pointer
as follows.

(define my-addr
(make-ftype-pointer in addr
(foreign-alloc (ftype-sizeof in addr))))

Scheme procedures to call inet pton and inet ntop are created
with ftype-ref. The function pointer can be looked up directly
using the foreign-entry function, as in the inet-pton defini-
tion, or by simply using a string, as in the inet-ntop definition.

(define inet-pton
(ftype-ref pton-t ()
(make-ftype-pointer pton-t

(foreign-entry "inet pton"))))
(define inet-ntop

(ftype-ref ntop-t ()
(make-ftype-pointer ntop-t "inet ntop")))

The inet-pton procedure computes the in addr representation
of an IP address.3

(inet-pton AF INET "192 .168 .1 .3" my-addr) ⇒ 1
(ftype-ref in addr (addr) my-addr) ⇒ 50440384

The integer representation can be verified with inet-ntop. A
pointer to char array is needed to store the result.

1 Networking structures are machine specific; this example uses the 32-bit
Linux version.
2 Types can be found through man pages, by scanning through header files,
through writing a small C program to return size information, or through a
tool for defining foreign function interfaces such as FFIGEN or SWIG.
3 The AF INET is a machine-specific constant; 2 on Linux.

(define my-char*
(make-ftype-pointer char

(foreign-alloc (fx* (ftype-sizeof char) 16))))
(inet-ntop AF INET my-addr my-char* 16)
⇒ "192 .168 .1 .3"

The char array my-char* can also be converted into a Scheme
string using the following function.

(define (char*->string fptr)
(let f ([i 0])

(let ([c (ftype-ref char () fptr i)])
(if (char=? c #\nul)

(make-string i)
(let ([str (f (fx+ i 1))])
(string-set! str i c)
str)))))

(char*->string my-char*) ⇒ "192 .168 .1 .3"
The char*->string function treats fptr as the pointer to the
start of a #\nul-terminated character array, using i to index its
elements.

By itself, the in addr structure is useful for calling inet pton
and inet ntop. More often it is used as part of the sockaddr in
structure. The sockaddr in structure is one of the sockaddr
family that represents addresses for various types of sockets. These
are distinguished by the sa family t field at the start of the
structure. A sockaddr common with an sa family t field can
be defined along with other sockaddr types as follows.

(define-ftype sa family t unsigned-short)
(define-ftype in port t unsigned-16)
(define-ftype sockaddr common
(struct

[family sa family t]))
(define-ftype sockaddr
(struct

[common sockaddr common]
[data (array 14 char)]))

(define-ftype sockaddr in
(struct

[common sockaddr common]
[port in port t]
[addr in addr]
[zero (array 8 char)]))

The sockaddr and sockaddr in inherit implicitly from the
sockaddr common structure by naming it as the first element of
the structure.

The sockaddr is a component of the addrinfo structure. The
getaddrinfo function uses this structure to report the IP addresses
for a DNS name. It uses the socklen t field to indicate the size of
the sockaddr field.

(define-ftype socklen t unsigned-32)
(define-ftype addrinfo
(struct

[flags int]
[family int]
[socktype int]
[protocol int]
[addrlen socklen t]
[addr (* sockaddr common)]
[canonname (* char)]
[next (* addrinfo)]))

The addrinfo structure contains information about the address
along with a pointer to the next address. The getaddrinfo pro-
cedure expects a DNS string, a port or protocol string, a pointer to



an addrinfo struct with “hints”, and a pointer to a pointer to to an
addrinfo struct. The addrinfo* ftype is defined as a pointer to
an addrinfo.

(define-ftype addrinfo* (* addrinfo))
(define-ftype getaddrinfo t

(function
(string string (* addrinfo) (* addrinfo*))
int))

(define getaddrinfo
(ftype-ref getaddrinfo t ()
(make-ftype-pointer getaddrinfo t
"getaddrinfo")))

Using getaddrinfo the showip example from Beej’s Guide to
Network Programming [9] can be adapted into the retrieve-ips
Scheme procedure.

(define hints
(make-ftype-pointer addrinfo
(foreign-alloc

(ftype-sizeof addrinfo))))

(define addr-char*
(make-ftype-pointer char
(foreign-alloc (fx* (ftype-sizeof char) 16))))

(define (retrieve-ips pname)
(let ([res (make-ftype-pointer addrinfo*

(foreign-alloc
(ftype-sizeof addrinfo*)))])

(getaddrinfo pname #f hints res)
(let f ([p (ftype-&ref addrinfo* (*) res)])

(if (zero? (ftype-pointer-address p))
’()
(if (fx= (ftype-ref addrinfo (family) p)

AF INET)
(cons
(inet-ntop AF INET
(ftype-&ref sockaddr in (addr)

(cast sockaddr in
(ftype-ref addrinfo
(addr) p)))

addr-char* 16)
(f (ftype-ref addrinfo (next) p)))

(f (ftype-ref addrinfo
(next) p)))))))

The hints structure is defined outside retrieve-ips, and is
reused across calls to the procedure. The family field is set
to AF INET and the socktype field is set to SOCK STREAM.4

These settings indicate that IP addresses should be returned by
the getaddrinfo function. Assuming the other fields are zeroed
out,5 the two remaining fields can be set as follows.

(ftype-set! addrinfo (family) hints AF INET)
(ftype-set! addrinfo (socktype) hints SOCK STREAM)

The retrieve-ips function allocates space for an addrinfo* to
store the result of calling getaddrinfo. Once getaddrinfo is
called, retrieve-ips iterates through the linked list pointed to
by res. The ftype-&ref operator gets the head of the list from
res. The next element is retrieved with ftype-ref at the end
of each iteration. In the body of the loop, the network family is
checked to verify it is AF INET and, if it is, the addr field is cast

4 SOCK STREAM is a machine-dependent constant; 1 on Linux.
5 Fields could be zeroed out individually, or all at once with C’s memset
function.

to a sockaddr in structure. The inet-ntop procedure converts
the IP address into a string representation. The ftype-&ref form
is used to get an ftype pointer to the in addr structure to pass to
inet-ntop. The cast operator is defined as follows.

(define-syntax cast
(syntax-rules ()

[( ftype fptr)
(make-ftype-pointer ftype

(ftype-pointer-address fptr))]))

It creates a new ftype pointer using the supplied ftype as the type.
This operation is similar to a C cast, except that it allocates a new
ftype pointer.

The retrieve-ips procedure can be used to lookup the IP
addresses associated with www .google .com.

(retrieve-ips "www .google .com") ⇒
("74 .125 .225 .84" "74 .125 .225 .80" "74 .125 .225 .81"
"74 .125 .225 .82" "74 .125 .225 .83")

2.3 Querying SQLite with a Callback Function
SQLite [16] is a small relational database system with a simple C
API for retrieving and setting information in the database. It pro-
vides the sqlite3 exec function as a convenient way to execute
SQL queries. Data retrieved by this function is returned via a call-
back procedure.

Before running the example, a test .db file is setup using the
sqlite3 command line program with the following commands.

sqlite3 test .db
sqlite> CREATE TABLE example

(id INTEGER PRIMARY KEY,
name VARCHAR(50),
email VARCHAR(50));

sqlite> INSERT INTO example (id, name, email)
VALUES (1, "Andrew W . Keep",

"akeep@cs .indiana .edu");
sqlite> INSERT INTO example (id, name, email)

VALUES (2, "R . Kent Dybvig",
"dyb@cs .indiana .edu");

This example demonstrates using ftypes to create a callback proce-
dure in Scheme to use with sqlite3 exec. The sqlite3 open
and sqlite3 close functions are also needed to open and close
the database.

These functions use an opaque data structure as a database
handle. The sqlite3 open function uses a pointer to a database
handle to setup the database. The sqlite3 exec function also
needs a callback function type and a pointer to a char pointer type
to return error messages. Ftypes for these are defined below.

(define-ftype db-handle void*)
(define-ftype db-handle* (* db-handle))
(define-ftype cb-t
(function (void* int (* char*) (* char*)) int))

(define-ftype char* (* char))

Types for sqlite3 open, sqlite3 close, and sqlite3 exec
are also needed.

(define-ftype open-t
(function (string (* db-handle*)) int))

(define-ftype close-t
(function ((* db-handle)) int))



(define-ftype exec-t
(function
((* db-handle) string (* cb-t)
void* (* char*))
int))

These function types can be used with ftype-ref to create the
db-open, db-close, and db-exec procedures.

(define db-open
(ftype-ref open-t ()
(make-ftype-pointer open-t "sqlite3 open")))

(define db-close
(ftype-ref close-t ()
(make-ftype-pointer close-t "sqlite3 close")))

(define db-exec
(ftype-ref exec-t ()
(make-ftype-pointer exec-t "sqlite3 exec")))

The cb-t callback expects four arguments: a void*, an int, and two
pointers to char*. The first argument allows an arbitrary pointer to
be passed from sqlite3 exec to the callback. This field is unused
in this simple example. The second argument indicates how many
values and columns of data are returned. The third and fourth ar-
guments are variable length arrays of char* arguments containing
the column names and values. The callback procedure loops cnt
times over the vals and cols arrays, printing out the column name
and value. It makes use of char*->string from the networking
example to convert a char* into a Scheme string. When finished,
it returns 0 to indicate success. The cb ftype pointer is setup with
the callback procedure to to prepare for the db-exec call.

(define (callback ignore cnt vals cols)
(do ([i 0 (fx+ i 1)])

((fx= i cnt))
(printf "˜a: ˜a\n"
(char*->string (ftype-ref char* () cols i))
(char*->string (ftype-ref char* () vals i))))

(printf "\n")
0)

(define cb (make-ftype-pointer cb-t callback))

A call to the db-open function opens the database file and ini-
tializes a handle to the database for use in the call to db-exec.
db-open.

(define db*
(make-ftype-pointer db-handle*
(foreign-alloc (ftype-sizeof db-handle*))))

(db-open "test .db" db*)

The db-exec function also needs a pointer to a char* to return
error messages. Once tese are setup, the db-exec function can be
called with the database handle, an SQL expression, the callback,
a 0 for the ignored data pointer, and zerr for catching error mes-
sages.

(define zerr
(make-ftype-pointer char*
(foreign-alloc (ftype-sizeof char*))))

(db-exec (ftype-ref db-handle* () db*)
"SELECT * FROM example;" cb 0 zerr) ⇒

id: 1
name: Andrew W . Keep
email: akeep@cs .indiana .edu
id: 2
name: R . Kent Dybvig
email: dyb@cs .indiana .edu

The callback procedure is called once for each result row, and
passed a value and column name for each of the three columns.
The data inserted at the sqlite3 command line is returned through
callback.

Finally, the code object from the cb variable is unlocked and the
database closed.

(unlock-object
(foreign-callable-code-object

(ftype-pointer-address cb)))
(db-close (ftype-ref db-handle* () db*))

Here, foreign-callable-code-object is passed the mem-
ory address for cb, retrieving the associated code object, and in
turn passing it to unlock-object. The database is closed using
db-close, called with the database handle.

2.4 Debugging with Ftypes
Making ftypes a well integrated part of the system is another im-
portant goal. This means providing pretty printing and debugging
support to treat an ftype like any other Scheme type.

The ftype-pointer->sexpr operation uses information stored
with the ftype pointer to determine the names and types of ftype
fields. It can convert complicated foreign structured data into an
s-expression.

For instance, the ftype-pointer->sexpr made it easy to see
the structure returned by getaddrinfo while developing the code
for the network example.

(getaddrinfo "www .google .com" #f hints res)
(ftype-pointer->sexpr res) ⇒
(* (struct

[flags 0]
[family 2]
[socktype 1]
[protocol 6]
[addrlen 16]
[addr (* (struct [family 2]))]
[canonname null]
[next
(* (struct

[flags 0]
[family 2]
[socktype 1]
[protocol 6]
[addrlen 16]
[addr (* (struct [family 2]))]
[canonname null]
[next ---
(* (struct

[flags 0]
[family 2]
[socktype 1]
[protocol 6]
[addrlen 16]
[addr (* (struct [family 2]))]
[canonname null]
[next null]))]))]))

The contents of the res ftype pointer is turned into an s-expression,
down to the final terminating null. This example shows only three
levels of the returned addrinfo structure (the first two and the last
one) to allow it to fit on the page, indicating the elided region with
---. The final item in the list is terminated by a NULL pointer,
indicated by null in the next field.

When dealing with data containing raw pointers, it is possi-
ble that a pointer is valid, but the data does not conform to the



shape expected by the ftype description, either because it is not
yet initialized or because data of a different type has been written
to this position in memory, have a pointer to an in addr struc-
ture where the next pointer has been overwritten with an invalid
pointer by some other operation. In this situation, an unexpected s-
expression might be generated. To support debugging these types of
issues, something more powerful than ftype-pointer->sexpr is
needed. Hence, the inspector also supports inspecting ftypes. The
inspector is available both from the Scheme REPL and the Scheme
debugger.

It can traverse ftype data structures, print values stored in mem-
ory, or alter foreign data. For instance, the getaddrinfo is re-
placed with a user specified function and the retrieve-ips loops
indefinitely, the addrinfo data structure can be inspected. If, while
traversing the data structure, the list is found to be unintentionally
circular, the next pointer at the end of the list can be set to NULL
through the inspector, and debugging can continue to ensure that
there are not other problems with retreive-ips.

3. Implementation
An efficient implementation is one of the primary goals of the
ftype mechanism, and it informed the design of the ftype syntax.
The ftype system leverages the fact that ftype pointers are accessed
through syntactic forms to calculate as much as possible about the
memory offsets at compile time, leaving a minimum of work to
be done at run time. This along with an efficient representation of
ftypes in memory and a set of open-coded compiler primitives helps
generate as few instructions as possible.

3.1 Ftype Pointers
The basic run-time unit of the ftype mechanism is the ftype pointer.
Two pieces of information are needed for an ftype pointer. The first
piece describes the structure of the ftype pointer. For scalar ftypes,
this information determines how values are marshaled, its size
in bytes, and its alignment. For structured types, structs, unions,
arrays, and bit-fields, it contains information about the memory
layout of fields and their types. Information about scalar and pointer
types allows the implementation to ensure safe access to structures
pointed to by an ftype pointer. Information about memory layout
allows the implementation to build efficient access and mutation
code. This is referred to as the ftype descriptor (FTD). The second
piece of information is the memory address of the data.

3.2 Representing Ftype Descriptors
One way to implement this would be to use a Scheme record with
two fields: an FTD field and an address field.

(define-record-type ftype-pointer
(fields ftd address))

In memory, ftype pointers would occupy three fields: an RTD field
holding a record type descriptor, an ftd field, and an address field.
There are two downsides to this representation. First, ftype pointers
need an RTD in addition to the FTD and address, meaning three
words of storage are needed. Second, in our system, addresses
outside the fixnum range6 are represented with a bignum. When
bignums are used, they must be converted back into a machine-size
word before being passed to a foreign function.

3.3 Extending the Record System
Fortunately, the existing record system supports both of these goals.
A record with a single field, such as the one defined below, is
similar to our vision of the ftype pointer.

6 Fixnums are 30 bits on 32-bit platforms and 61 bits on 64-bit platforms.

Figure 1. The base RTD, the RTD for my-record, and an instance
of my-record

Figure 2. The base FTD

(define-record-type my-record (fields addr))

A record with a single field occupies two words of memory. The
first word is an RTD and the second word stores the value of the
field. This is shown in Figure 1 as the object labeled my-record.

RTDs are represented as records. An RTD record has a parent
field, to support inheritance, a field listing the fields of the record,
and other information beyond the scope of this discussion. The
RTD for my-record is shown in Figure 1 as my-record-rtd.

The RTD for this record is the base-rtd, since it is a record
type descriptor. The #f in the parent field indicates it does not
inherit from other record types. The fields element of the
my-record RTD lists the single addr field.

The base-rtd is also represented in Figure 1. Since it is a
record type descriptor, it has itself as its RTD. The #f in the parent
field indicates it has no parent. In its fields entry it lists the fields
necessary to create new RTDs.

Representing RTDs with records, allows the record system to
be extended by creating new kinds of RTDs that inherit from the
base-rtd. The ftype descriptor is created by inheriting from the
base-rtd to create the base FTD. Figure 2 shows the base-ftd
record. This record extends base-rtd with size and alignment
fields. The size field is used to indicate the size, in bytes, of the
ftype, while the alignment indicates how it should be aligned in
memory. The base-ftd allows ftype pointers to be stored in two
words, satisfying the first part of the desired ftype pointer structure.

3.4 Representing Ftype Forms
The base-ftd is the root of the ftype system, but FTDs repre-
senting struct, union, pointer, array, bits, and scalar types are also



Figure 3. The scalar and struct FTDs

needed. Figure 3 shows the struct-ftd and the scalar-ftd. The
struct-ftd extends the base-ftd with a fields entry to list the
items in a foreign struct. Each entry in the fields list contains an
identifier with the name of the field, the offset of the field from the
base pointer, and an FTD indicating the type of the field.

The scalar-ftd extends the base-ftd with a swap? field,
used to determine if the byte order of the scalar is swapped for
non-native endianness, and a type field corresponding to the scalar
foreign type it represents, e.g. integer-32, double, char.

The union-ftd, similar to the struct-ftd extends base-ftd
with a fields entry to represent the items in a union. Fields in the
union-ftd contain two items: an identifier with the name of the
field and an FTD representing the type of the field. Offsets are not
needed for union fields, since elements of a union occupy the same
space in memory.

The bits-ftd also extends base-ftd with a fields entry to
represent the items in the bit-field. It also adds a swap? to indicate
if a non-native endianness is used to layout the bytes of the bit-field.
Entries in the bits-ftd fields list contain four items: an identifier
with the name of the field, a flag indicating if the field is signed, the
starting bit of the field, and the ending bit of the field.

The array-ftd extends base-ftd with a length field to
record the length of the array and an ftd field to indicate the type
of items in the array.

The pointer-ftd extends base-ftd with an ftd field to indi-
cate the type of the item pointed to. The ftd field in a pointer is a
mutable field to support ftypes with recursive or mutually recursive
structures.

Finally, the function-ftd extends the base-ftd with three
fields: a conv field to store the calling conventions, an arg-type*
field to store a list of argument types, and a result-type to store
the result type. These are used by make-ftype-pointer to create
foreign-callable ftype pointers and ftype-ref to create foreign
procedures.

3.5 Representing packed, unpacked, and endian

The packed, unpacked, and endian forms are not represented
by FTDs. Instead, the packed and unpacked fields determine
how the offsets of struct ftypes are calculated. In an unpacked
struct (the default), padding is added to ensure fields are placed
along machine defined alignment boundaries, as specified by the
application binary interface (ABI). In contrast, a packed struct adds
no padding, so offsets are calculated based only on field size. This
gives programmers full control over the layout of a struct, but
care must be taken not to violate the host machine’s alignment
requirements for retrieving items from memory.

Figure 4. The base ftype pointer (fptr) RTD

Figure 5. The double FTD

Like the packed and unpacked forms, the endian form is
used to determine how an FTD is constructed. If the endianness
id different from the native endianness of the machine then a scalar
field will use the swapped scalar FTD (one with the swap? flag set
to #t) and a bits field will have its swap? flag set to #t.

3.6 Creating ftype pointers
FTDs represent the structure of an ftype pointer, but an ftype
pointer is a record with an FTD and a single address field. The
fptr RTD shown in Figure 4 represents this single-field record.
The fptr record uses the existing record system’s ability to specify
the type of its fields to mark the address field as a raw, machine-
word sized integer. This allows any memory address to be stored
in the address field without the need to use a bignum, satisfying
our goal of not creating bignums for addresses. Both user defined
FTDs and the scalar FTDs inherit from this record.

3.7 Scalar Ftypes
Each scalar type is represented by a scalar-ftd that inherits
from the fptr RTD. Figure 5 shows the FTD for a scalar dou-
ble on the Intel x86. It is a scalar FTD, so the RTD field is set
to scalar-ftd and it inherits from the fptr RTD. The size
and alignment fields are both set to 8 on Intel i386 based sys-
tems, following the i386 ABI. Size and alignment are set to match
the ABI for each supported platform. The double FTD in Fig-
ure 5 uses native endianness so the swap? field is set to #f. The
type field is set to double. Each scalar type has corresponding
swapped and non-swapped FTDs. The swapped versions are used
when the endianness differs from the native machine endianness.
Scalar FTDs can be broken down into machine-dependent and
machine-independent types. The short, unsigned-short, int,
unsigned, unsigned-int, long, unsigned-long, long-long,
unsigned-long-long, char, wchar, float, double, void*,
wchar t, size t, and ptrdiff t types are machine-dependent
and correspond to the like-named C types. The iptr, uptr,
fixnum, and boolean types are also machine-dependent, where
uptr is an equivalent to the void* type, iptr is a signed-integer
the same size as the uptr, fixnum is treated as an iptr, but kept in
the fixnum range, and boolean is treated as an int with Scheme
#f converted to 0, and all other Scheme values convert to 1. The
machine-independent types are single-float, double-float,
integer-64, unsigned-64, integer-32, unsigned-32,
integer-16, unsigned-16, integer-8, and unsigned-8, where
the single-float type corresponds to the 32 bit IEEE single-
precision floating point number, the double-float corresponds



Figure 6. The FTD for the two-doubles ftype

to the double precision 64 bit IEEE floating point number, and the
integer and unsigned types represent signed and unsigned integers
of the corresponding sizes.

3.8 User Defined Ftypes
When a new ftype is defined a new FTD specifying its structure is
also created. For instance, a new struct with two double fields is
defined as follows:

(define-ftype two-doubles
(struct
[a double]
[b double]))

This creates the FTD shown in Figure 6. The RTD is struct-ftd,
since it is a new type of struct, and it inherits from double-ftd
since its first element is a double. This illustrates how implicit
inheritance in ftypes is implemented utilizing the single-inheritance
mechanism of the existing record system. The size field is 16
bytes, and the alignment field is 8, indicating it must be aligned
on an 8-byte boundary. Again, this follows the ABI for the Intel
i386. The fields list contain two fields: a at offset 0 with FTD
double-ftd and b at offset 8 with FTD double-ftd.

3.9 Constructing ftype pointers
When ftypes are defined the FTD is attached to the ftype name iden-
tifier. Information about an ftype can be retrieved using this identi-
fier. For instance, ftype-sizeof uses this identifier to retrieve the
size information. The make-ftype-pointer form retrieves the
FTD to use it as the RTD of a new ftype pointer. These operations
happen at compile time to avoid run-time overhead, making use of
ftype pointers as efficient as possible.

Constructing function ftype pointers requires a little more
work since the address expression can be a string or a proce-
dure. When a string is supplied, make-ftype-pointer uses the
foreign-entry function to look up the entry in a shared object
(or dynamically-linked library on Windows). The foreign-entry
function returns either the address of the entry point of the named
foreign function or raises an error indicating it cannot be located.
The address is stored in the newly created ftype pointer.

When the address expression is a procedure, a new foreign-
callable code object is created. This creates a wrapper function to
marshal arguments from foreign values into a Scheme representa-
tion before calling the procedure. It also marshals the Scheme re-
turn value into a foreign representation. The convention, argument
type list, and result type stored in the function FTD along with the
host machine ABI specify how this happens. The newly created
code object is then locked. This prevents the garbage collector from
relocating it when it is expected to be at a given address. Finally,
the entry point address of the code object is stored in the pointer po-
sition. This allows pointers to foreign-callable Scheme procedures
to be passed as part of a larger data structure. When a pointer to the
code object is no longer needed, the code object can be found using
foreign-callable-code-object, and then unlocked with the
unlock-object function.

3.10 Referencing and Setting ftype pointers
The ftype-ref, ftype-&ref, and ftype-set! forms allow ef-
ficient access to data addressed by an ftype pointer. To ensure this
efficiency, these forms look up the FTD for the named ftype at com-
pile time and use the accessors list to determine the offset of data
to reference in memory. This means at run time, retrieving the data
from memory, can be as fast as two memory references, one to get
the base memory address from the ftype pointer, and the second to
retrieve the data. More memory references are required if the ac-
cessor list includes pointer dereferences, since each deference also
needs to be performed to find the data.

For instance, recall the x-type example from Section 2. In
order to access the third integer-16 stored in the union at the
start of the structure we would use ftype-ref as follows.

(ftype-ref x-type (a s 2) my-x)

The ftype-ref macro retrieves the x-type FTD and determines
the offset of the third integer-16 in the s array of the a union to
be 4, since it is 4 bytes from the start of the foreign structure. It also
determines the data type of the field is integer-16. It produces
code to verify that my-pointer is an ftype pointer of type x-type
and a call to the internal $fptr-ref-integer-16 primitive. This
primitive dereferences the address from my-pointer and converts
the value found there into a Scheme value. The conversion is
needed because our fixnum representation differs from the integer
representation used by the host machine ABI. In the case of a 16-
bit integer, this is a simple shift operation. For larger integers, the
size of the integer is checked, and a bignum allocated if the value is
too large to store in a fixnum. For instance, when loading a 32-bit
integer on a 32-bit platform where the fixnum representation is 30
bits wide, a bignum might be needed. Our system also supports a
mode where type checks are disabled. In this mode the verification
step is eliminated.

Referencing a function ftype is a little more involved than ref-
erencing scalar or pointer fields. When a function is referenced, a
new procedure is created to allow Scheme to call the foreign proce-
dure. A wrapper procedure to marshal Scheme arguments into their
foreign representation is created. The wrapper then marshals the
foreign return value into a Scheme representation. The convention,
argument type list, and result type from the function FTD along
with the host ABI are used to determine how happens.

Setting a field in an ftype structure is similar to referencing a
field, except that the Scheme value supplied is also checked. If
the example above had been an ftype-set! operation it would
use the $fptr-set-integer-16 primitive. This primitive checks
the value and marshals it into a foreign representation. This type
check is eliminated when type checks are disabled. Pointers are
also set this way by passing an ftype pointer of the correct type.
Only pointer and scalar ftypes can be set.

When the scalar being set or referenced uses an endianness that
differs from the native machine endianness, the bytes are swapped
appropriately using a machine instruction for byte swapping if one
exists or performing the shifts and logical ands necessary if not.

Instead of creating new primitives to handle these operations,
the ftype system could have used the existing foreign-ref and
foreign-set! procedures to do this work. This degrades perfor-
mance since a raw address is stored in the ftype pointer, and if this
value is outside the fixnum range, a new bignum would need to be
allocated for it. Further, the foreign-ref and foreign-set! op-
erations must check to see if the value is a bignum and convert it
back to a raw address if it is. Adding new primitives avoided the
need for this representation shuffling.



4. Status
The ftype system described in this paper is implemented in Chez
Scheme Version 8.4 [5], which runs on a variety of platforms.
Unpacked ftypes on each platform follow the ABI for the platform.
This ensures that unpacked structures match those produced by the
C compiler and that the alignment of structs, unions, and scalar
types also match those produced by the C compiler. Since the ABI
on host platforms do not frequently change, the implementation
is isolated from problems of interacting with new compilers for
C, FORTRAN, or other high-level languages that support the host
ABI.

A large test suite exists to test that the ftypes system follows
these conventions. Beyond testing basic functionality, ftypes pro-
duced by the Scheme system are compared with equivalent defini-
tions created by the C compiler. The tests create both ftypes and C
structures and then compile C code that reports the size and offsets
of fields to compare with the equivalent ftypes. This has helped
verify, within the limits of testing, that our understanding of the
ABI is correct, and helped identify places where we have inter-
preted them differently from the C compiler. The test suite helped
us discover some inconsistencies between our implementation and
the platform’s C compiler. These have been resolved on all plat-
forms, except for one obscure inconsistency on Mac OS X Pow-
erPC, where the C compiler does not appear to adhere to the ABI.
Since this platform is no longer supported by Apple, we have de-
cided to leave this relatively obscure bug.

5. Related Work
Many aspects of the ftype system exist in other Scheme foreign
function interface systems. The most common feature to support is
C-style structs, but most other structural features are supported by
at least one other system, with the exception of bit-fields. Support
for endianness also appears to be unique to the ftype system. On the
implementation side, it is more difficult to know how closely other
systems match our own as the low-level details of these features
tend not be documented, but we believe our overloading of record
type descriptors to double as ftype descriptors defining the structure
of foreign data is unique, as well as the efficiency of the resulting
code. One feature common in other systems that is not included in
the ftype system is support for C-style enumerations. Since these
are essentially integers, and the C standard does not require any
additional checking be done for them, we have decided to leave
them out of the system, though a macro to define enumeration types
is straightforwardly defined:

(define-syntax (define-enum-ftype x)
(define (enum e*)
(let f ([e* e*] [n 0])

(if (null? e*)
’()
(syntax-case (car e*) ()

[(e v)
(cons #’(e v)
(f (cdr e*)

(+ (syntax->datum #’v) 1)))]
[e (identifier? #’e)
(cons #‘(e #,n)
(f (cdr e*) (+ n 1)))]))))

(syntax-case x ()
[( name e* . . .)
(with-syntax ([((e v) . . .) (enum #’(e* . . .))])
#’(begin

(define-ftype name int)
(define e v) . . .))]))

Building support for enumerations into the ftype system would
allow for additional checking that the C standard allows but does
not require.

5.1 Scheme Foreign Data
Racket uses libffi [1, 8] to support the foreign function interface.
Beyond the basic support provided by libffi, Racket provides a type
system for foreign types. Similar to the ftype system, these types
can be used when looking up FFI objects such as foreign proce-
dures. Beyond support for the basic scalar types and a variety of
string types, the type system can be extended with both C style
structs and tagged pointers. Like the ftype system, structs defined
with the define-cstruct syntax create a new pointer type that
can be used as either an argument or return value to a foreign pro-
cedure. Structs provide a set of mutator functions that verify the
Scheme value provided is of the correct type and marshal it into the
appropriate C type, similar to the ftype-set! form. Structs cre-
ated this way also have a tagged pointer type and support both im-
plicit inheritance (when the first field of a struct is a struct) and ex-
plicit inheritance by naming a struct to inherit from. Tagged point-
ers also support type inheritance and pointer arithmetic. Racket also
includes support for function types, enumerations, and an enumer-
ation type based on bitmasks. Racket provides a simpler syntax
for specifying function argument types than the ftype system, par-
tially because the ftype system currently needs to attach the func-
tion type to a name. Finding a more flexible way to create function
ftype pointers in place of the current make-ftype-pointer syn-
tax would help to alleviate some of the difficulties with the ftype
system.

Larceny Scheme provides a layered FFI [12], with memory
peek and poke operations supporting low-level access to foreign
memory. These operations support a set of extensible core scalar,
pointer, function, maybe, and one-of types. Scalar types are ex-
tended using ffi-add-attribute-core-entry! with an exist-
ing type, along with a function to marshal values from Scheme into
C and optionally a function to marshal values from C back into
Scheme. New pointer types, based on the void* type can also be
created and support a hierarchical type structure. Pointers can be
cast up or down the hierarchy, but are checked to ensure they are
never cast across the hierarchy. These new types can be used as
parameters or return types to functions.

At a higher level, Larceny also provides the define-c-info
macro to look up information about C constants, structures, etc.
This macro looks up information by creating and running a small C
program during expand time to determine information such as con-
stants or struct sizes and offsets. This retrieves machine-specific in-
formation without requiring the programmer to look it up on each
supported platform. We see this feature as complementary to the
ftype system, which could use information from a generated C pro-
gram at expand time to create an appropriate ftype definition. This
feature does require a C compiler be available during expansion
time, but once expanded, code can be compiled on machines with-
out a C compiler.

At a higher level, a define-c-struct macro utilizes c-info
to create a constructor that builds an appropriately sized bytevector
for the struct. This bytevector is allocated in non-relocatable mem-
ory, so it can be safely passed to a C function as a boxed argument,
but cannot be used as a return value for a function. In this way it is
not as flexible as the ftype system.

On the implementation side, pointers that derive from void*
are stored similar to our ftype pointers, in that a record RTD is used
to determine the type and inheritance of the pointer. No structural
information about the data is provided. Foreign data accesses are
currently done through a low-level peek and poke, which reads or
writes to a bytevector before marshaling data to the appropriate



type [13]. As such, we believe our accesses to be a little faster,
though primitives similar to our own could certainly be added to
Larceny.

Bigloo Scheme [15] also provides support for exporting struct,
union, array, pointer, enum, function, and opaque types, when
compiling to C. Structs and unions provide a constructor, a pred-
icate, a set of accessors, and a set of mutators that make use of
Bigloo’s optional type specifiers. These functions serve in place
of make-ftype-pointer, ftype-pointer?, ftype-ref, and
ftype-set!. These definitions include the underlying C names,
which Bigloo can make effective use of through its compilation
into C code. Opaque types are defined using this information from
C to handle types when the internals are not needed by the Scheme
code. The syntax is similar to the ftype syntax, though nested types
must be named since the type and field name are tied together in
the syntax. Bigloo also provides a tool called Cigloo that can be
used to produce C data types from header files.

Gambit Scheme [6] also provides an interface for defining
structs, unions, and general types. These forms are specified with-
out field information, relying on the information gained from the C
compiler, once Scheme code is compiled into C. Since the structure
is not provided explicitly, the programmer must also provide mar-
shaling functions for foreign data. Gambit also provides a mecha-
nism for defining function pointer types.

5.2 Foreign Data in Common Lisp
Common Lisp provides two main standards for implementing a
foreign function interface, the universal foreign function interface
(UFFI) [14] and the common foreign function interface (CFFI) [3].
Both standards define a way to define structs, unions, and point-
ers. In both cases these define new types that can be used in the
definition of foreign functions similar to the ftype system. Both
standards also allow for arbitrarily nested structures. UFFI uses a
similar syntax to ftypes, allowing definitions of arrays as fields of
the structs and unions. Elements of structs are accessed through the
foreign-slot-value operator in CFFI or the get-slot-value
operator in UFFI, which have a similar form to the ftype-ref
form.

5.3 ML Foreign Data
Standard ML of New Jersey (SML/NJ) provides a method for
encoding C types as ML types [11] and working with data defined
in these structures. Foreign data created with this facility is stored in
the ML heap along with other ML data. When ML makes a foreign
call this data is marshaled into a C representation and copied into
the C heap. When C calls back into SML/NJ procedures, this data
is then marshaled back into ML representations and copied into the
ML heap. Efficient access to foreign data is not the primary goal of
this solution, and in this way, it differs from the ftype system.

A second foreign function interface (FFI) for SML/NJ [4] has
been proposed and implemented. Like the current SML/NJ FFI,
this version also encodes C types using the ML type system, but
instead of copying data between the ML and C heaps, it extends
the existing SML/NJ system to add primitive operations to deal
with C data representations. Like the ftype system, it attempts to
encode the full C data representation semantics. Also like the ftype
system, the implementation of this encoding of C data attempts to
be as efficient as possible. It also includes structural equality of C-
types, something the ftype system does not support.

5.4 Interface Generation Tools
While these programming implementations and others allow pro-
grammers to define interfaces to foreign libraries and programs,
it can be a tedious process to implement such an interface. This
process is ripe for automation since it tends to be driven from dec-

larations of constants, data structures, and functions in C header
files. Several tools exist to help ease the process of generating these
interfaces.

In the Scheme community, FFIGEN [10] can be used to gener-
ate foreign function interfaces for a variety of Scheme implemen-
tations. FFIGEN is divided into a front-end that utilizes LCC [7] to
parse C header files and generate an internal representation for con-
stants, data structures, and function definitions. This internal repre-
sentation can be used with one of the Scheme implementation spe-
cific back-ends to generate the Scheme code to interact with these
libraries.

In the broader community, the SWIG project [2] provides a
similar interface, but supports a much wider range of languages,
and can also be used to generate C stubs, if required by the host
language. Similar to FFIGEN it is divided into a front-end that
effectively acts as a C parser and compiler and a set of back-ends
used to generate code for the various languages supported. SWIG
already provides support for several Scheme implementations, in
addition to the other programming languages.

Tools that generate interface code, such as these, are comple-
mentary to the purpose of the ftype system.

6. Conclusions and Future Work
The ftype system provides a convenient way to manage data out-
side the Scheme heap, including C-style data structs, unions, arrays,
and bitfields as well as memory whose arbitrary structure is deter-
mined by the Scheme programmer or the requirements of interact-
ing with low-level devices and device drivers. The implementation
is efficient, with accesses boiling down to inline machine code that
performs a type-check (when type-checking is enabled), two mem-
ory references, and a simple marshaling operation. It is well inte-
grated into our compiler and run-time system, including the debug-
ger, which understands ftypes and allows the printing, inspection,
and modification of arbitrary foreign data. With type checking en-
abled (the default), use of ftype pointers is type safe to the extent
that the ftype declaration is a faithful description of the underlying
data. In other words, as long as the address provided is a valid in-
stance of the ftype, all accesses from then on are safe. We believe
ftypes provide a good model for interfacing with foreign data, in a
reasonably safe, efficient, and convenient manner.

Currently, each occurrence of an ftype definition in the source
code declares a new ftype distinct from all other ftypes, including
those with similar structure. This avoids potentially costly struc-
tural comparisons at run time, but a method for allowing the same
ftype to be defined in multiple places would be useful. One ap-
proach would be to add a nongenerative ftype form that is sim-
ilar in behavior to the nongenerative define-record-type sub-
form, although a mechanism that treats all syntactically similar
ftype definitions as identical might be nice if the amortized cost
of the run-time type equivalence checks can be made low enough.

In the current ftype system, a struct is an implicit subtype of the
type of its first field, and an array ftype is an implicit subtype of
the type of each element. From a purely functionality perspective,
a union ftype should similarly be an implicit subtype of each of its
members. We have chosen not to do this because the underlying
implementation supports only single inheritance and the added
type-checking overhead might not be justified in any case. It might
be nice to find an efficient way to perform type checks for union
types or to provide a syntax for explicit inheritance from some or
all of the member types.

We have not yet implemented a mechanism for automatically
generating ftypes from C header files using a tool like FFIGEN [10]
or SWIG [2]. Since both of these tools allow for the development of
new back-ends, it should be straightforward to add a back-end that
supports ftypes. We might also want to provide a tool like Larceny’s



c-info system that can be used to determine information via a C
compiler, if available, at expand time.

Acknowledgments
Thanks to members of the Corporate Development Technology
group at Cisco Systems for early feedback and discussions about
these extensions. Comments from the anonymous reviewers led to
several improvements in this paper’s presentation.

References
[1] E. Barzilay. Foreign interface for plt scheme. In Workshop on Scheme

and Functional Programming, 2004.
[2] D. M. Beazley. SWIG : An easy to use tool for integrating scripting

languages with C and C++. Proceedings of the 4th USENIX Tcl/Tk
Workshop, July 1996.

[3] J. Bielman and L. Oliveira. CFFI user manual, August 2010. URL
http://common-lisp.net/project/cffi/manual/index.html.

[4] M. Blume. No-longer-foreign: Teaching an ML compiler to speak C.
Electronic Notes in Theoretical Computer Science, 2001.

[5] R. K. Dybvig. Chez Scheme Version 8 User’s Guide. Cadence
Research Systems, 2009.

[6] M. Feeley. Gambit-C user manual, March 2011. URL
http://www.iro.umontreal.ca/~gambit/doc/gambit-c.html.

[7] C. W. Fraser and D. R. Hanson. A Retargetable C Compiler: Design
and Implementation. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 1995. ISBN 0805316701.

[8] A. Green. The libffi home page. URL
http://sourceware.org/libffi/.

[9] B. Hall. Beej’s Guide to Network Programming. Jorgensen Publishing,
February 2009.

[10] L. T. Hansen. FFIGEN user’s manual, February 1996. URL
http://www.ccs.neu.edu/home/lth/ffigen/userman.html.

[11] L. Huelsbergen. A portable C interface for Standard ML of New
Jersey. Technical report, AT&T Bell Laboratories, January 1996.

[12] F. Klock II. The layers of Larceny’s foreign function interface. Scheme
and Functional Programming Workshop, Sept. 2007.

[13] F. Klock II. Email correspondence. private communcation, 2011.
[14] K. M. Rosenberg. UFFI reference guide, 2003. URL

http://uffi.b9.com/manual/.
[15] M. Serrano. Bigloo: A practical Scheme compiler

user manual for version 3.6a, January 2011. URL
http://www-sop.inria.fr/mimosa/fp/Bigloo/doc/
bigloo.html.

[16] The SQLite authors. The SQLite home page, 2011. URL
http://www.sqlite.org/.

Copyright c© 2010 Andrew Keep and R. Kent Dybvig.


