
A pattern-matcher for αKanren
-or-

How to get into trouble with CPS macros

Andrew W. Keep Michael D. Adams William E. Byrd Daniel P. Friedman
Indiana University, Bloomington, IN 47405

{akeep,adamsmd,webyrd,dfried}@cs.indiana.edu

Abstract
In this paper we present two implementations of the pattern-
matching macros λe and matche for αKanren. The first imple-
mentation generates clean code, but our use of CPS-macros in its
implementation leads to a problem in determining when a new
binding needs to be introduced for a pattern variable. This problem
stems from our delayed creation of bindings, where the comparison
of identifiers is done first and then binders created in a later step.
This may lead to an issue when macros generating λe or matche

expressions may appear to break hygiene because the CPS-macros
incorrectly identify two identifiers as being the same. The second
implementation addresses these concerns by using more traditional
macros, generating bindings as new variables are encountered.

1. Introduction
We present two implementations of the λe and matche macros.
The first implementation is written using macros in continuation-
passing style (CPS) [?]. While this implementation generates nice
clean αKanren code, we encounter an issue related to comparing
identifiers that may lead to programs that appear to break hygiene,
suggesting that some care must be taken when writing macros in
CPS style. In particular our implementation delayed the creation of
bindings until the final step, which led to problems where two iden-
tifiers in a pattern that share the same symbolic representation, but
were created in different sections of the program may be identified
as being equal, since both remain free during the macro expansion
process. The second implementation fixes the issue with the first
implementation by using a more traditional macro style, introduc-
ing bindings for new variables as it proceeds. No knowledge of
αKanren is required for our discussion of the CPS-macro issue we
encountered, which is described in section 4.

The Prolog family of logic programming languages has long
used patterns to define logic rules. The first appearance of a vari-
able in these patterns leads to a new logic variable being created
in the global environment used by Prolog. αKanren, a nominal
logic programming language [?] similar to αProlog, on the other
hand, provides no facility for pattern matching and requires logic
variables and noms be explicitly introduced with exist and fresh,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
2009 Workshop on Scheme and Functional Programming

respectively. While this does not limit αKanren’s expressiveness,
programs written in αKanren are often longer when compared with
αProlog equivalents.

The λe and matche macros described in this paper allow
αKanren1 to take advantage of pattern matching with automatic
variable creation, without changing the semantics of the language.
The clauses of λe and matche represent a disjunction and are ex-
panded into a conde expression, αKanren’s disjunction operator.
Each pattern is then expanded into a set of variable bindings and
unifications.

In the next section we provide a brief refresher for αKanren,
followed by a description of λe and matche, along with illustrative
examples. The following two sections present the two implemen-
tations of λe and matche. Finally future work and conclusion sec-
tions discuss next steps for the λe and matche macros and wrap up
the paper.

2. An αKanren Refresher2

αKanren is an embedding of nominal logic programming in
Scheme. It extends the Scheme language with a term construc-
tor ./ (pronounced “tie”) and five operators: ≡, #, exist3, fresh,
and conde.
≡ unifies two terms using nominal unification. exist and fresh,

which are syntactically similar to Scheme’s lambda and whose
bodies are conjoined, are used to introduce new lexical variables;
those introduced by exist bind logic (or unification) variables,
while those introduced by fresh bind noms (also called “names”
or “atoms” in nominal logic). A nom unifies only with a logic vari-
able or with itself. noms are often used to represent variable names.
is a freshness constraint: (# a t) asserts that the nom a does not
occur free in t. ./ is a term constructor: (./ a t) creates a term in
which all free occurrences of the nom a in t are considered bound.
Thus (# a (./ a t)) always succeeds.

conde, which is syntactically similar to cond, expresses a dis-
junction of clauses. Each clause may contain arbitrarily many con-
joined goals. Unlike cond, every clause of a conde will return a
stream of results, as long as the conjoined goals in the clause all
succeed.

run provides an interface between Scheme and αKanren; it al-
lows the user to limit the number of answers returned, and to spec-
ify a logic variable whose value should be reified to obtain answers.
Reification is the process of replacing distinct logic variables in a

1 As well as miniKanren [?, ?]
2 A similar introduction to αKanren originally appeared in the αLeanTAP
paper [?].
3 The name exist is chosen to avoid conflict with R6RS Scheme’s [?] exists.

term with unique names. The first such variable to be found is rep-
resented by the symbol 0, the second by 1, and so on. For exam-
ple:

(run5 (q)
(exist (x y z)

(conde

((≡ x 3) (≡ y 2) (≡ z y))
((≡ x y) (≡ y z))
((≡ x z)))

(≡ ‘(,x ,y ,z)4q)))

⇒
((3 2 2)
(0 0 0)
(0 1 0))

This run expression has three answers, each corresponding to one
line of the conde. In the first answer, all three variables have been
instantiated to ground values. In the second, the three variables have
been unified with one another, so they have the same reified value.
In the third, x and z share the same reified value, which is distinct
from that of y.

Nominal unification equates α-equivalent binders:
(run1 (q) (fresh (a b) (≡ (./ a a) (./ b b))))⇒ (0)
Although the noms a and b are distinct and would therefore fail to
unify, this run expression succeeds. Like the terms λa.a and λb.b,
the terms (./ a a) and (./ b b) bind in the same way and are thus
α-equivalent.
αKanren is based on αProlog [?], which implements the nom-

inal unification of Urban, Pitts, and Gabbay [?], and miniKanren,
an earlier logic programming language [?, ?]. For a more complete
description of αKanren, see Byrd and Friedman [?].

3. Using λe and matche

The λe and matche macros provide pattern matching with au-
tomatic variable creation functionality. The central difference be-
tween λe and matche is that λe generates a λ expression with an
embedded conde, while matche let-binds its expression to a tem-
porary, and then matches the temporary with the pattern.

3.1 Writing the append Relation
Appending two lists is a common operation in logical and func-
tional programming languages and Prolog has a very concise defi-
nition for this operation.

append ([] , Y,Y) .
append ([A |D] , Y2 , [A |R]) :− append (D, Y2 , R) .

Using λe the αKanren version can be expressed almost as
succinctly. In particular the two clauses correspond exactly to the
two Prolog rules used to define append.

(define appendo

(λe (x y z)
((() ,y))
(((,a . ,d) (,a . ,r)) (appendo d y r))))

As in the Prolog version of this code, λe unifies x with () and
y with z in the first clause and generates new logic variables a, d,
and r along with unifications for ‘(,a . ,d) with x, and ‘(,a . ,r) with
z. The actual expansion is left until the next two sections where we
discuss the two implementations.

In appendo, is used to indicate a position in the match that has
a value we do not care about. No unification is needed here, since
no matter what value y has, it will always succeed and need not
extend the variable environment. Instead of here, we can also use
,y. λe recognizes a variable being matched against itself and avoids
adding the unnecessary unification.

4 Here, backquote and comma are used to build a list of logic variables: the
expression ‘(,x ,y ,z) is equivalent to [X, Y, Z] in Prolog. Similarly, the
expression ‘(,x . ,y) constructs a pair, and is equivalent to [X|Y] in Prolog.

3.2 λe and matche Description
The basic format for λe is:

(λe formals
(pattern-1 goal-1 . . .)
(pattern-2 goal-2 . . .)
. . .)

where the formals maybe any valid λ formals expression, including
those for variable length argument lists.

Each clause of the λe expression will be expanded into a clause
of a conde expression, αKanren’s disjunction operator. In each
clause the pattern will be matched against the formals supplied in
λe and expanded into a set of variable bindings and unifications,
including any user specified goals within the scope of the variables
created by the pattern. It is important to note that variables not
named in the formals list or the pattern, but used in user specified
goals must still be explicitly introduced by the user.

The pattern matcher recognizes the following forms:

() The null list.
Similar to Scheme’s , this represents a position where an ex-
pression is expected, but we do not care what the expression
actually is.

,x A logic variable x. If this is the first appearance of x in the pattern
and it does not appear in the formals list of λe a new logic
variable will be created.

,@a A nom a. Similar to the logic variable case, it will be created
if it does not exist.

’e Preserves the expression, e. This is provided as an escape for
the other special forms where the exact contents should be
preserved. For instance, if we wish to match we could use
’ in our pattern to remove the special meaning of .

sym Where sym is any Scheme symbol, will be preserved in the
unification patterns as a symbol.

(a . d) Arbitrarily nested pairs and lists are also allowed.
(./ n e) A ./ constructor, binding the nom n in the expression e.

The ./ form is included to provide a more natural way for pro-
grammers to include αKanren’s binding construct in the patterns to
be matched.

Similar to αProlog, patterns in λe and matche use different syn-
tax to indicate the difference between a logic variable and a nom.
In αProlog, this is done using capitalization of variables, inherently
segmenting the name space between logic variables and noms. In
λe and matche the unquote and unquote-splicing keywords are
used to differentiate, but the variable names themselves both share
the same name variable name space within Scheme. This means,
for instance, that we cannot create both a logic variable x and a
nom x in the same lexical scope.

matche has the following format:

(matche expr
(pattern-1 goal-1 . . .)
(pattern-2 goal-2 . . .)
. . .)

where expr is any Scheme expression and the patterns for each
clause use the same pattern format as λe. Using matche the pattern
is matched against the whole expression, rather then the individual
formal parameters of λe.

3.3 A More Involved Example
appendo provides a nice introduction to λe, but a more involved
example will help further illustrate the use of λe and matche. Here
we present typo, a type-inferencer for the simply-typed λ-calculus,

from [?] to illustrate the use of noms and tie. The type environ-
ment is represented using a simple association list. The function
to lookup items in the environment can be easily implemented in
αKanren as follows:

(define lookupo

(λe (x tx g)
((((,x . ,tx) . ,d)))
((((,x̂ . ,t̂x) . ,d))
(# x x̂)
(lookupo x tx d))))

We can then implement the type inferencer, typo as follows:

(define typo

(λe (g e te)
(((var ,x)) (lookupo x te g))
(((app ,rator ,rand))
(exist (trator trand)

(≡ ‘(→ ,trand ,te) ,trator)
(typo g rator trator)
(typo g rand trand)))

(((lam (./ ,@b ,ê)) (→ ,trand ,t̂e))
(exist (ĝ)

(# b g)
(≡ ‘((,b . ,trand) . ,g) ĝ)
(typo ĝ ê t̂e)))))

Here, trator and trand in the second clause, and ĝ must be
introduced by the programmer, since they are not introduced in
the program source, but are needed by the goals that specify the
recurrence in typo.

The first typo example shows that λc.λd.c has type (α→ (β→ α)).

(run∗ (q)
(fresh (c d)

(typo ’() ‘(lam ,(./ c ‘(lam ,(./ d ‘(var ,c))))) q)))
⇒

((→ 0 (→ 1 0)))

The second example shows that self-application does not type
check, since the nominal unifier uses the occurs check [?].

(run∗ (q)
(fresh (c)

(typo ’() ‘(lam ,(./ c ‘(app (var ,c) (var ,c)))) q)))
⇒

()

The final example is the most interesting, since it searches for
terms that inhabit the type (int→ int).

(run2 (q) (typo ’() q ’(→ int int)))⇒

((lam (tie a0 (var a0)))
(lam (tie a0 (app (lam (tie a1 (var a1))) (var a0)))))

The first two terms found are λb.b and λb.(λa.a)b. αKanren reifies
noms as a0, a1, etc. In the two terms above a0 and a1 are reified
noms.

While the typo and lookupo relations are fairly concise, in both
cases the matches are done primarily against a single argument to
the λe expression rather then all of the arguments. Instead of using
λe then, we might choose to use matche.

(define typo

(λ (g e te)
(matche e

((var ,x) (lookup x te g))
((app ,rator ,rand)
(exist (trator trand)

(≡ ‘(→ ,trand ,te) ,trator)
(typo g rator trator)
(typo g rand trand)))

((lam (./ ,@b ,ê))
(exist (ĝ trand t̂e)

(≡ ‘(→ ,trand ,t̂e) te)
(# b g)
(≡ ‘((,b . ,trand) . ,g) ĝ)
(typo ĝ ê t̂e))))))

(define lookupo

(λ (x tx g)
(matche g

((,a . ,d) (≡ ‘(,x . ,tx) a))
(((,x̂ . ,t̂x) . ,d)
(# x x̂)
(lookupo x tx d)))))

Both implementations of λe and matche were designed for use
in R5RS, but can be ported to an R6RS library with relative ease, as
long as care is taken to ensure that the ./ and auxiliary keywords
are exported with the library.

4. Implementing λe and matche

In implementing a macro for the λe and matche pattern language
we had a few goals in mind. The primary goal is providing the
convenience of the pattern language, but we would also like to
generate code that will perform at least as well as if the generated
code had been written by a human. As a rule of thumb this means
that we would like to bring new logic variables and noms into scope
only when we know they will be used and we would like to create
as few empty exist or fresh constructs as possible.

In order to understand a little better why these are our guiding
performance rules, we need to know a little bit more about the im-
plementation of αKanren. While logic variables and noms are rep-
resented by the programmer as normal variables within Scheme,
behind the scenes a substitution is used to keep track what logic
variables are bound to. This information is then used by the unifier
in αKanren to determine when matches succeed and fail. The uni-
fier may also extend this substitution as logic variables are unified
with other objects, including noms, ground terms, and other logic
variables, in the system. While this substitution must exist through-
out an αKanren program, the programmer is not responsible for ex-
plicitly naming and managing the substitution, instead the various
forms in αKanren, such as conde, exist, and fresh are responsible
for creating a monadic transform on the code contained within that
threads the substitution through the goals contained within these
forms.

In our case exist and fresh are of particular import because these
are the forms we will be generating for each logic variable and
nom created. exist and fresh are both binding forms in αKanrenand
effectively generate a let that binds the variables named in the exist
or fresh to a new logic variable or nom, respectively. While each
logic variable created incurs only a small cost, we would prefer to
create only those logic variables we know will be needed. In order
to provide a more concrete example of this, consider the following
exist expression.

(exist (x y z) (≡ ‘(,x . ,y) ’(a . b)) (≡ x y) (≡ z ’c))

Here, we create bindings for x, y, and z even though z will never
be used since (≡ x y) will fail because (≡ ‘(,x . ,y) ’(a . b)) binds x
to ’a and y to ’b. We could write this with tighter lexical scope for
our variables as:

(exist (x y) (≡ ‘(,x . ,y) ’(a . b)) (≡ x y) (exist (z) (≡ z ’c)))

This rule helps exist clauses to fail more quickly which cuts
off αKanren’s search for solutions which can be important in long
searches.

The other rule — is this whole description worth while?

4.1 λe and matche

4.2 Determining When to Add Bindings
One of the key issues in implementing λe and matche is determin-
ing when a variable reference encountered in the pattern is a new
variable requiring a binding not an existing variable. Since syntax-
rules does not directly provide a method for testing the equality of
two identifiers, a macro like syn-eq [?] provides a way for a list of
identifiers to be maintained while the macro is being expanded and
used to direct computation based on the appearance of an identifier
in the list of already encountered variable identifiers.

In order to use syntax-rules to perform this comparison a
macro-generating macro is used, where the identifier being searched
for is made into an auxiliary keyword in the generated macro.

Here is the implementation of syn-eq (renamed as mem-id):

(define-syntax mem-id (syntax-rules () ((id (x∗ . . .)
conseq altern) (letrec-syntax ((helper (syntax-rules (id) ((() c a) a) ((
(id . z∗) c a) c) (((y . z∗) c a) (helper z∗ c a))))) (helper (x∗ . . .) conseq
altern)))))

Here the letrec-syntax bound macro helper recurs until either
the keyword, id, originally passed in as the first argument to mem-
id is encountered, or until the end of the list, expanding into the
original conseq or altern code depending on which case succeeds.
For λe and matche the conseq will not create the variable, while
the altern will, since it will only happen when id is not found in the
list.

4.3 Controlling Expansion Order
In general CPS-macros [?] seem to provide a good fit for a pattern
matching macro where parts of the pattern must be reconstructed
for the use during unification and bindings for variables must be
generated outside these unifications.

Returning to the appendo example above, the expanded conde

expression might be:

(define appendo

(λ (x y z)
(conde

((≡ () x) (≡ y z))
((exist (a d)

(≡ (cons a d) x)
(exist (r)
(≡ (cons a r) z)
(appendo d y r)))))))

In order to expand into this conde expression, each clause of
the λe has its pattern processed, looking for variables that must
be introduced and building a list of unifications, keeping track of
where variables must be introduced. Since the pattern is processed
from left to right and the variables encountered in the left most part
of the clause should be scoped around the goals generated to the
right, we cannot expand into exist and fresh expressions in place.
Instead a place holder is put into the generated list of unifications
for the variable creation and the continuation macro will take care
of building the exist and fresh expressions.

To give an example of what this looks like, here is the second
clause of appendo at this intermediate stage:

(ex a d) (≡ (cons a d) x) (ex r) (≡ (cons a r) z)

Here the (ex a d) and (ex r) are place holders for exist expres-
sions. The scoping for the exist will include all of the items to the
right of it in the list, so the list is processed from right to left, with
any user supplied goals serving as the left most part of the expres-
sion. The final expression will be:

(exist (a d) (≡ (cons a d) x)
(exist (r) (≡ (cons a r) z) (appendo d y r)))

Note that the exist expressions are placed such that each gen-
erated variable has the smallest possible scope. This is important
because we would like each clause in the conde expression to fail
as quickly as possible. Here if the (≡ (cons a d) x) unification fails,
r will never be created. For more details on this implementation
we have included the source for the CPS-macro implemnetation in
appendix A.

4.4 Identifier Equality and Binding
While this technique of delaying creation of the binding forms al-
lows us to generate concise code, it has a subtle issue in how mem-
id determines when a variable needs to be created. The problem
can be detected when we write a macro that expands into a λe or
matche.

Consider the following macro that expands into a λe expression.

(define-syntax break-λe

(syntax-rules ()
((v) (λe (x y)

(((,a . ,v) ,v))))))

Here break-λe expects a variable name to be supplied to the
macro that will be used in the generated λe. This simple, though
admittedly contrived example, demonstrates how a CPS-macro im-
plementation of λe and matche that uses the mem-id trick, pro-
duces code in conflict with our intuitions about Scheme’s hygienic
macros.

To demonstrate the problem and hone in on what is going on,
three examples are presented here.

First, if d is supplied as to break-λe it expands as follows:

(break-λe d)⇒
(λe (x y)

(((,a . ,d) ,d)))⇒
(λ (x y)
(conde

((exist (a d)
(≡ (cons a d) x)
(≡ x y)))))

As expected, λe sees both a and d as new variables that need to
have a binding created in the exist expression.

Instead, a user of break-λe may decide to use x, which just
happens to be one of the variables bound by λe. In the expansion
below x1 and x2 are both symbolically x, but represent the x
supplied to break-λe and the generated formal parameter x in the
λe, respectively.

(break-λe x1)⇒
(λe (x2 y)

(((,a . ,x1) ,x1)))⇒
(λ (x2 y)
(conde

((exist (a x1)
(≡ (cons a x1) x2)
(≡ x1 y)))))

Here too, hygiene is preserved and a binding x1 is created.
Finally a programmer may choose a as the variable to supply to
break-λe. Here the expansion does not seem to work out so well:

(break-λe a)⇒
(λe (x y)

(((,a . ,a) ,a)))⇒
(λ (x y)
(conde

((exist (a)
(≡ (cons a a) x1)
(≡ a y)))))

Although we may have expected the hygienic macro system to
create a binding for two distinct a variables as it did with x in
the second example, instead only one binding is created. In the
final resulting expression, the a supplied to break-λe will remain
unbound, resulting in an unexpected result.

The issue arises as the confluence of two events. First, as we
processed the pattern binding creation is delayed until the whole
pattern has been processed. Second, mem-id lifts the variable we
are testing into an auxiliary keyword in the helper macro to com-
pare it with the list of identifiers. The comparison between id
and each identifier from the list will succeed when both have the
same binding or when both are free and they are symbolically
equal [?, ?].

In the first example, both a and d are free, but are not sym-
bolically equal. In the second example x1 and x2 are symbolically
equal, but one is bound while the other is not, so the comparison
fails as we would hope. It is only in the final case both a identifiers
are free and symbolically equal that the problem exhibits itself.

4.5 Caution Must be used with CPS-macros
The conclusion to draw from this experience is that while CPS-
macros provide a mechanism for controlling the order a macro
expands in, if it is used in conjunction with generating bindings
selectively based on a running list of identifiers, these identifiers
must be bound as they are encountered rather then delaying this to
a final continuation.

The larger implications of this, is that CPS-macros may not be
as powerful a tool as originally thought. In particular, it shows

that macro writers using this technique must take particular care
to ensure that any new variables bound through this method are
written in such a way that they avoid accidental capture and ensure
that the expanded code will not contain unbound variables, such as
our first implementation of λe and matche encountered.

Currently, we know of no way to work around this using only
syntax-rules macros without imposing the responsibility for ensur-
ing proper variable handling on the user.

5. Fixing the λe and matche Implementation
The CPS-macro implementation of λe and matche encountered a
problem without a readily available solution, so the second imple-
mentation for the most part restricts itself to more straightforward
macro writing techniques. This approach is not without complica-
tions of its own, since λe and matche must expand into conde,
exist, and fresh, which impose their own rules about the expres-
sions in their body. The challenge arises because conde expects a
set of clauses, where each clause is a list of one or more goals and
exist and fresh expect a list of binders followed by one or more
goals. Since the helpers for the λe and matche will expand within
the context of conde, exist, or fresh, they must expand into valid
goals.

Part of this arises from the fact that the current implementation
of conde, exist, and fresh perform a monadic transform, that λe

and matche must be careful not to interfere with.
Unfortunately these restrictions mean that λe and matche can-

not generate quite as clean αKanren code as the original CPS-
macro implementation. Looking again at our appendo example, us-
ing this correct version of the macro, we generate the slightly more
verbose:

(λ (x y z)
(conde

((exist () (≡ () x) (≡ y z)))
((exist (a)

(exist (d)
(exist () (≡ (cons a d) x)

(exist (r)
(exist () (≡ (cons a r) z) (appendo d y r)))))))))

Here the exist clauses that bind no variables are needed to
preserve the property that only a single goal appear in each position
within the body of the conde clauses as a sort of begin expression.

The break-λe macro now works correctly in all cases, though.
In particular the (break-λe a) example now expands into5:

(break-λe a1)⇒
(λe (x y)

(((,a2 . ,a1) ,a1)))⇒
(λ (x y)

(conde

((exist (a2)
(exist (a1)

(exist ()
(≡ (cons a2 a1) x)
(≡ a1 y)))))))

Even though this version of λe and matche uses mem-id it now
correctly identifies the two a variables as unique, since the binding
is created by exist before the next section of the pattern is expanded.

5 In this example we have taken some liberties, since the exist macro would
need to be in scope in order for it to work properly, but the full expansion
of exist would needlessly complicate the example.

(define-syntax λe

(syntax-rules ()
((args c c∗ . . .)
(λ args (match-to-conde args (c c∗ . . .))))))

(define-syntax matche

(syntax-rules ()
((e c c∗ . . .)
(let ((t e)) (match-to-conde t (c c∗ . . .))))))

λe and matche provide the interface to the underlying set of
macros that eventually generates the finished conde expression. In
the case of λe a λ expression with the same args will be generated
around the conde expression, while matche will generate a let
binding for the expression to be matched.

(define-syntax match-to-conde

(syntax-rules ()
(((a∗ . . .) (c c∗ . . .))
(conde ((do-clause (a∗ . . .) (a∗ . . .) c))

((do-clause (a∗ . . .) (a∗ . . .) c∗)) . . .))
(((a∗ r) (c c∗ . . .))
(conde ((do-clause (a∗ . . . r) (a∗ r) c))

((do-clause (a∗ . . . r) (a∗ r) c∗)) . . .))
((a (c c∗ . . .))
(conde ((do-clause (a) a c))

((do-clause (a) a c∗)) . . .))))

match-to-conde is responsible for generating the conde expres-
sion, passing first a list of named variables, then the original argu-
ment list, and finally the clause to be processed to do-clause.

(define-syntax do-clause
(syntax-rules (unquote unquote-splicing)

((have () (() . g∗)) (exist-helper () . g∗))
((have (a . a∗) ((p . p∗) . g∗))
(do-pattern-opt have a p a∗ p∗ . g∗))

((have a (p . g∗))
(do-pattern-opt have a p () () . g∗))))

The do-clause macro processes each formal from the argument
list with the corresponding part of the pattern, relying on do-
pattern and do-pattern-opt to generate the variable bindings and
unifications for each clause, finally expanding into the list of user
supplied goals.

(define-syntax do-pattern-opt
(syntax-rules (unquote unquote-splicing)

((have a (unquote p) a∗ p∗ . g∗)
(mem-id p (a)

(do-clause have a∗ (p∗ . g∗))
(do-pattern have a ,p () ,p a∗ p∗ . g∗)))

((have a (unquote-splicing p) a∗ p∗ . g∗)
(mem-id p (a)

(do-clause have a∗ (p∗ . g∗))
(do-pattern have a ,@p () ,@p a∗ p∗ . g∗)))

((have a a∗ p∗ . g∗) (do-clause have a∗ (p∗ . g∗)))
((have a p a∗ p∗ . g∗)
(do-pattern have a p () p a∗ p∗ . g∗))))

While λe and matche could generate unifications for each part
of the pattern, better code can be generated by recognizing unneces-
sary unifications and not generating them. do-pattern-opt ensures
that no unification is generated when the logic variable or nom in
the pattern part matches the formal parameter or when a indi-
cates a “do not care” argument. In all other cases do-pattern will
be used to generate variable bindings and the unification.

(define-syntax do-pattern
(syntax-rules (quote unquote unquote-splicing)

((have a () () op () ())
(do-clause have () (() (pat-to-goal #t op () () a))))

((have a () () op a∗ p∗ . g∗)
(exist ()

(pat-to-goal #t op () () a)
(do-clause have a∗ (p∗ . g∗))))

((have a (unquote p) r op a∗ p∗ . g∗)
(mem-id p have

(do-pattern have a r () op a∗ p∗ . g∗)
(exist (p) (do-pattern (p . have) a r () op a∗ p∗ . g∗))))

((have a (unquote-splicing p) r op a∗ p∗ . g∗)
(mem-id p have

(do-pattern have a r () op a∗ p∗ . g∗)
(fresh (p) (do-pattern (p . have) a r () op a∗ p∗ . g∗))))

((have a (quote p) r op a∗ p∗ . g∗)
(do-pattern have a r () op a∗ p∗ . g∗))

((have a (pa . pd) () op a∗ p∗ . g∗)
(do-pattern have a pa pd op a∗ p∗ . g∗))

((have a (pa . pd) r op a∗ p∗ . g∗)
(do-pattern have a pa (pd . r) op a∗ p∗ . g∗))

((have a p r op a∗ p∗ . g∗)
(do-pattern have a r () op a∗ p∗ . g∗))))

The main job of λe and matche is to generate variable bindings
and unifications for the pattern. do-pattern is responsible for gen-
erating these bindings. unquote and unquote-splicing use mem-id
to determine if the logic variable or nom has been encountered, If
not a biding is generated and it is added to the list of known vari-
ables. The other clauses are responsible for traversing the full pat-
tern. Some optimization is also peformed by do-pattern. It avoids
generating unnecessary succeed goals by recognizing when it has
reached the end of the pattern and there are no user supplied goals,
treating the final pattern unification as a user supplied goal.

Once bindings for all new variables exist, the original pattern
is passed off to pat-to-goal and the rest of the pattern and formal
parameters are passed back to the do-clause to continue processing.

(define-syntax pat-to-goal
(syntax-rules (quote unquote unquote-splicing ./

pair-l pair-r ./-l ./-r)
((#f e () t∗ v) (exist-helper t∗ (≡ e v)))

((#t z t∗ v) (pat-to-goal #f t z (t . t∗) v))
((#t (unquote p) z t∗ v) (pat-to-goal #f p z t∗ v))
((#t (unquote-splicing p) z t∗ v)
(pat-to-goal #f p z t∗ v))

((#t (quote p) z t∗ v) (pat-to-goal #f ’p z t∗ v))

((#t (./ pa pd) z t∗ v)
(pat-to-goal #t pa (./-l z pd) t∗ v))

((#f e (./-l z pd) t∗ v)
(pat-to-goal #t pd (./-r z e) t∗ v))

((#f e (./-r z pa) t∗ v)
(pat-to-goal #f (./ pa e) z t∗ v))

((#t (pa . pd) z t∗ v)
(pat-to-goal #t pa (pair-l z pd) t∗ v))

((#f e (pair-l z pd) t∗ v)
(pat-to-goal #t pd (pair-r z e) t∗ v))

((#f e (pair-r z pa) t∗ v)
(pat-to-goal #f (cons pa e) z t∗ v))

((#t p z t∗ v) (pat-to-goal #f ’p z t∗ v))))

Each pattern part and its corresponding formal parameter are as-
sembled into a unification by pat-to-goal. The pat-to-goal macro is
also responsible for generating temporary logic variables for places
where is used within a pattern. These temporaries will never be
unified with other variables, but need to be created to ensure the
shape of the pattern is being preserved. Since pat-to-goal must
create variable bindings and the final goal, we rely on something
very similar to the CPS-macros used in the first implementation.
Here though, the continuation is represented using a zipper [?] to
indicate how the tree has been traversed and if a ./ or cons is the
appropriate constructor for a given part of the pattern.

(define-syntax exist-helper
(syntax-rules ()

((()) succeed)
((() g) g)
((t∗ g∗ . . .) (exist t∗ g∗ . . .))))

exist-helper is a helper macro, used to generate the succeed
goal when supplied an empty argument list and no goals, the pro-
vided goal, when supplied an empty argument list and a single goal,
or a normal exist expression when variables need to be bound or
more then one goal has been supplied.

6. Future Work
6.1 Further Investigations into CPS-macros and Binders
Although we were able to rewrite our CPS-macro into a more
traditional style macro, our approach was largely to use what we
had learned to rewrite from scratch. The traditional method also
required us to have some knowledge of how the underlying conde,
exist, and fresh macros work in order to ensure that we did not
produce invalid code with our macro. It would be preferable to
have an approach for transforming CPS-macros into traditional
style macros and vice-versa, so that a macro programmer who
encounters similar problems is not left needing to restart from
scratch.

It is also possible that there is an idiom we could use with CPS-
macros that would allow us to get the best of both worlds, allowing
us to return to a CPS-macro implementation of λe and matche

without the problem related to identifiers being left free during the
process as our current implementation does.

6.2 Improving the λe and matche Macros
While the intent of λe and matche is to provide a convenience
for programmers using αKanren, they also provide information
about the variables used in a pattern match that was previously
unavailable to ≡.

Since the pattern matching macro knows when new logic vari-
ables and fresh noms are being introduced, it may be possible to use
this information to create a specialized version of≡ that would use
this information, preserving the soundness of αKanren’s nominal
unification, while providing better performance. In particular in the
case of new logic variables it may be possible to avoid looking up
these variables in the substitution, avoiding a relatively expensive
operation.

In addition to knowing which variables were created in the
pattern, we may also be able to create specialized versions of ≡
during the expansion process that make use of the structure of the
pattern in order to perform the unification more quickly avoiding
looking up new logic variables during the unification process.

7. Conclusion
λe and matche bring a simple, but powerful pattern matching ab-
straction to αKanren, that should help programmers express re-

lations more concisely and lead to easier to use code. While pat-
tern matching macros are nothing new in the Scheme community,
our pair of CPS-macros with variable binding creation uncovered a
macro design issue the recommends a certain amount of caution be
exercised when CPS-macros are used to selectively bind new vari-
ables. If not it is possible to write macros that break our intuitions
about how hygienic macros work leading to the possibility of gen-
erating invalid code or potentially even variable capture in the worst
case, all without leaving the relative safety of syntax-rules macros.
Finally, it demonstrated that in certain situations more traditional
macro writing techniques seem to be the only way to accomplish
certain tasks.

8. Acknowledgements
We gratefully acknowledge Lindsey Kuper, who initially pointed
out the bug with how our CPS-macro implementation was treating
identifiers.

A. First λe and matche Implementation
The CPS-macro version of λe and matche follows. Note that in
this version of the code, mem-id has been generalized to provide
the case-id macro, which works similar to case.

(define-syntax match-to-conde

(syntax-rules ()
((a () . pc) (conde . pc))
(((a . a∗) (((p . p∗) . g) (pr∗ . g∗) . . .) . pc)
(make-match-cont (a . a∗) a a∗ p p∗ g ((pr∗ . g∗) . . .) . pc))

((a ((p . g) (pr∗ . g∗) . . .) . pc)
(make-match-cont a a () p () g ((pr∗ . g∗) . . .) . pc))))

(define-syntax make-match-cont
(syntax-rules ()

((args a a∗ p p∗ g ((pr∗ . g∗) . . .) . pc)
(handle-pattern top a p

(make-clause-cont a a∗ p∗ ()
(build-clause g

(match-to-conde args ((pr∗ . g∗) . . .) . pc)))
((a . a∗) () ())))))

(define-syntax build-clause-part
(syntax-rules ()

((() () (l∗ . . .) seen (k∗ . . .) . g) (k∗ . . . (l∗ g)))
(((a . a∗) (p . p∗) (l∗ . . .) seen k . g)
(handle-pattern top a p

(make-clause-cont a a∗ p∗ (l∗ g) k) (seen () ())))
((a p (l∗ . . .) seen k . g)
(handle-pattern top a p

(make-clause-cont a () () (l∗ g) k) (seen () ())))))

(define-syntax build-var
(syntax-rules ()

((() () (k∗ . . .) . g) (k∗ g))
((evar () (k∗ . . .) . g) (k∗ . . . (ex . evar) . g))
((() fvar (k∗ . . .) . g) (k∗ . . . (fr . fvar) . g))
((evar fvar (k∗ . . .) . g)
(k∗ . . . (ex . evar) (fr . fvar) . g))))

(define-syntax build-goal
(syntax-rules ()

((a (k∗ . . .)) (k∗ . . .))
((a (k∗ . . .) p) (k∗ . . . (≡ p a)))))

(define-syntax make-clause-cont
(syntax-rules ()

((a a∗ p∗ l k (seen evar fvar) . p)
(build-goal a

(build-var evar fvar
(build-clause-part a∗ p∗ l seen k)) . p))))

(define-syntax handle-pattern
(syntax-rules (quote unquote unquote-splicing ./ top)

((tag a () (k∗ . . .) lv p∗ . . .) (k∗ . . . lv p∗ . . . ()))
((top a (k∗ . . .) lv p∗ . . .) (k∗ . . . lv p∗ . . .))
((tag a (k∗ . . .) (seen evar fvar) p∗ . . .)
(k∗ . . . ((t . seen) (t . evar) fvar) p∗ . . . t))

((tag a (unquote p) (k∗ . . .) (seen evar fvar) p∗ . . .)
(case-id p

((a) (k∗ . . . (seen evar fvar) p∗ . . .))
(seen (k∗ . . . (seen evar fvar) p∗ . . . p))
(else (k∗ . . . ((p . seen) (p . evar) fvar) p∗ . . . p))))

((tag a (unquote-splicing p) (k∗ . . .) (seen evar fvar) p∗ . . .)
(case-id p

((a) (k∗ . . . (seen evar fvar) p∗ . . .))
(seen (k∗ . . . (seen evar fvar) p∗ . . . p))
(else (k∗ . . . ((p . seen) evar (p . fvar)) p∗ . . . p))))

((tag a (quote p) (k∗ . . .) lv p∗ . . .) (k∗ . . . lv p∗ . . . (quote p)))

((tag a (./ pa pd) k lv p∗ . . .)
(handle-pattern inner t1 pa

(handle-pattern inner t2 pd
(build-pattern ./ k)) lv p∗ . . .))

((tag a (pa . pd) k lv p∗ . . .)
(handle-pattern inner t1 pa

(handle-pattern inner t2 pd
(build-pattern cons k)) lv p∗ . . .))

((tag a p (k∗ . . .) lv p∗ . . .) (k∗ . . . lv p∗ . . . ’p))))

(define-syntax build-pattern
(syntax-rules ()

((f (k∗ . . .) lv p∗ . . . pa pd) (k∗ . . . lv p∗ . . . (f pa pd)))))

(define-syntax build-clause
(syntax-rules (fr ex)

((() (k∗ . . .) ()) (k∗ . . . (succeed)))
(((pg∗ . . .) (k∗ . . .) ()) (k∗ . . . (pg∗ . . .)))
(((pg∗ . . .) k (g∗ . . . (ex . v)))
(build-clause ((exist v pg∗ . . .)) k (g∗ . . .)))

(((pg∗ . . .) k (g∗ . . . (fr . v)))
(build-clause ((fresh v pg∗ . . .)) k (g∗ . . .)))

(((pg∗ . . .) k (g∗ . . . g))
(build-clause (g pg∗ . . .) k (g∗ . . .)))))

(define-syntax case-id
(syntax-rules (else)

((x ((x∗∗ . . .) act∗) . . . (else e-act))
(letrec-syntax

((helper (syntax-rules (x else)
(((else a)) a)
(((() a) cl . cl∗) (helper cl . cl∗))
((((x . z∗) a) cl . cl∗) a)
((((y z∗ (.)) a) cl . cl∗)
(helper ((z∗ (.)) a) cl . cl∗)))))

(helper ((x∗∗ . . .) act∗) . . . (else e-act))))))

	Introduction
	An Kanren Refresher
	Using e and matche
	Writing the append Relation
	e and matche Description
	A More Involved Example

	Implementing e and matche
	e and matche
	Determining When to Add Bindings
	Controlling Expansion Order
	Identifier Equality and Binding
	Caution Must be used with CPS-macros

	Fixing the e and matche Implementation
	Future Work
	Further Investigations into CPS-macros and Binders
	Improving the e and matche Macros

	Conclusion
	Acknowledgements
	First e and matche Implementation

