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ABSTRACT
Sound malware analysis of Android applications is challeng-
ing. First, object-oriented programs exhibit highly inter-
procedural, dynamically dispatched control structure. Sec-
ond, the Android programming paradigm relies heavily on
the asynchronous execution of multiple entry points. Exist-
ing analysis techniques focus more on the second challenge,
while relying on traditional analytic techniques that suffer
from inherent imprecision or unsoundness to solve the first.
We present Anadroid, a static malware analysis frame-

work for Android apps. Anadroid exploits two techniques
to soundly raise precision: (1) it uses a pushdown system to
precisely model dynamically dispatched interprocedural and
exception-driven control-flow; (2) it uses Entry-Point Satu-
ration (EPS) to soundly approximate all possible interleav-
ings of asynchronous entry points in Android applications.
(It also integrates static taint-flow analysis and least per-
missions analysis to expand the class of malicious behaviors
which it can catch.) Anadroid provides rich user interface
support for human analysts which must ultimately rule on
the “maliciousness” of a behavior.
To demonstrate the effectiveness of Anadroid’s malware

analysis, we had teams of analysts analyze a challenge suite
of 52 Android applications released as part of the Auto-
mated Program Analysis for Cybersecurity (APAC) DARPA
program. The first team analyzed the apps using a ver-
sion of Anadroid that uses traditional (finite-state-machine-
based) control-flow-analysis found in existing malware anal-
ysis tools; the second team analyzed the apps using a ver-
sion of Anadroid that uses our enhanced pushdown-based
control-flow-analysis. We measured machine analysis time,
human analyst time, and their accuracy in flagging mali-
cious applications. With pushdown analysis, we found sta-
tistically significant (p < 0.05) decreases in time: from 85
minutes per app to 35 minutes per app in human plus ma-
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chine analysis time; and statistically significant (p < 0.05)
increases in accuracy with the pushdown-driven analyzer:
from 71% correct identification to 95% correct identification.

Categories and Subject Descriptors
D.2.0 [SOFTWARE ENGINEERING]: Protection Mech-
anisms; F.3.2 [LOGICS AND MEANINGS OF PRO-
GRAMS]: Semantics of Programming Languages—Program
analysis,Operational semantics

General Terms
Languages, Security
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static analysis; taint analysis; abstract interpretation; push-
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1. INTRODUCTION
Google’s Android operating system is the most popular

mobile platform, with a 52.5% share of all smartphones [21].
Due to Android’s open application development community,
more than 400,000 apps are available with 10 billion cumu-
lative downloads by the end of 2011 [20].

While most of these third-party apps have legitimate rea-
sons to access private data, utilize the Internet, or make
changes to local settings and file storage, the permissions
provided by Android are too coarse, allowing malware to slip
through the cracks. For instance, an app that needs to read
information from only a specific website and access to GPS
information must, necessarily, be granted full read/write ac-
cess to the entire Internet, allowing it to maliciously leak
location information. In another example, a note-taking ap-
plication that writes notes to the file system can use the
file system permissions to wipe out SD card files when a
trigger condition is met. Meanwhile, a task manager that
legitimately requires every permission available can be be-
nign. To understand application behaviors like these before
running the program, we need to statically analyze the appli-
cation, tracking what data is accessed, where sensitive data
flows, and what operations are performed with the data, i.e.,
determine whether data is tampered with.

However, static malware analysis for Android apps is chal-
lenging. First, there is the general challenge of analyzing



object-oriented programs where the state of the art is fi-
nite state based. Specifically, traditional analysis regimes
like k-CFA [40] and its many variants implicitly or explic-
itly finitize the stack during abstraction. In effect, analyz-
ers carve up dynamic return points and exception-handling
points among a finite number of abstract return contexts.
When two dynamic return points map to the same abstract
context, the analyzer loses the ability to distinguish them.
Second, there is the domain-specific challenge from the

Android programming paradigm, which is event-driven with
multiple entry points and asynchronous interleaved execu-
tion. A typical strategy of existing static malware detec-
tion usually relies upon an existing analytic framework, i.e.,
CHEX [31] depends on WALA [24], Woodpecker depends on
Soot [41], and various ad hoc techniques proposed to deal
with the problem: either by heuristic aborting of the paths
unsoundly [31], or combining dynamic execution to elimi-
nate paths not appearing at run time [44]. One problem
with this strategy is the inherent imprecision of the under-
lying analytic framework means imprecise malware analysis
on top of it. Another problem is that many static malware
analyzers go unsound in order to handle the large number
of permutations for multiple entry points for the sake of ef-
ficiency. This means the static analyzer can no longer prove
the absence of behaviors, malicious or otherwise.
In this paper, we describe Anadroid, a generic static mal-

ware analyzer for Android apps. Anadroid depends on two
integrated techniques: (1) it is the first static analysis using
higher-order pushdown control-flow-analysis for an object-
oriented programming language; (2) it uses Entry-Point Sat-
uration (EPS) to soundly approximate interleaving execu-
tion of asynchronous entry points in Android apps. We
also integrate static taint flow analysis and least permis-
sions analysis as application security analysis. In addition,
Anadroid provides a rich user interface to support human-in-
the-loop malware analysis. It allows user-supplied predicates
to filter and highlight analysis results.
To demonstrate the effectiveness of Anadroid’s malware

analysis, we evaluate a challenge suite of 52 Android apps
released as part of the DARPA Automated Program Anal-
ysis for Cybersecurity (APAC) program. We compare a
malware analyzer driven by finite-state control-flow-analysis
with our model with respect to accuracy and analysis time.
We found that pushdown-driven malware analysis leads to
statistically significant improvements in both aspects over
traditional static analysis methods (which use finite-state
methods like k-CFA to handle program control [40]).
The remainder of this paper is organized as follows. We

illustrate the challenges via a condensed example malicious
application in Section 2. Then we present our solutions
in the subsequent two sections, where Section 3 presents
the foundational pushdown control-flow analysis and Sec-
tion 4 details Entry-point saturation (EPS). Based on push-
down control-flow analysis and EPS, we integrate static taint
flow analysis and least permissions analysis into our analytic
framework, as presented in Section 5. Section 6 presents our
tool and Section 7 evaluates the effectiveness of our tech-
nique by comparing our results with results from finite state-
based analysis. Case studies summarizing the vulnerabilities
we have found are described in Section 8. Section 9 presents
related work and Section 10 concludes.

2. CHALLENGES OF STATIC MALWARE
ANALYSIS FOR ANDROID

The program Kitty.java is adapted from an Android mal-
ware application developed and released by a red team on
the DARPA APAC program. It exfiltrates location data
from pictures stored on the users phone to a malicious site
(on Lines 19 and 33) or posts the information (on Lines
36–38) via an Android Intent if the first attempt fails. This
example helps illustrate the two challenges of static malware
detection for Android programs.

1 public class KittyQuote extends Activity {
2 String img = "k155"; // kitty image
3 // other fields ...
4 public void onCreate(Bundle savedState) {
5 super.onCreate(savedState);
6 // build quote list and other initialization
7 }
8 public String getKitty() {
9 // access "DCIM/Camera" and use ExifInterface

10 // to exfiltrate location
11 }
12 public void aboutButton(View view) {
13 // display normal information
14 String website = "http://www.catquotes.com";
15 startActivity(
16 new Intent(Intent.ACTION_VIEW,
17 Uri.parse(website)));
18 try {
19 new SendOut().execute(website);
20 } catch (Exception e) { }
21 }
22 public void nextButton(View view) {
23 img = getKittey(); // store loc info
24 }
25 public void prevButton(View view) {
26 img = getKittey();
27 }
28 public void kittyQuoteButton(View view) {
29 // display kitty quote as toast message
30 // ... and send out location info to a website
31 String url = "http://www.catquotes.com?" + img;
32 try {
33 new SendOut().execute(url);
34 } catch (Exception e) {
35 // if network fails, not giving up
36 startActivity(
37 new Intent(Intent.ACTION_VIEW,
38 Uri.parse(url)));
39 }
40 }
41 class SendOut extends AsyncTask {
42 protected Void doInBackground(URI... uris) {
43 HttpGet hg = new HttpGet(uris[0]);
44 try {
45 new DefaultHttpClient().execute(hg);
46 } catch (Exception e) { }
47 return null;
48 }
49 // ...
50 }
51 }

Kitty.java

Fundamental challenge: imprecision induced by finite-
based analytic model for object-oriented programs.

Android apps are written in Java, and it can be difficult
to statically produce a precise control flow graph of the pro-



gram, particularly in the presence of exceptions. Many ex-
isting static analyzers for Java programs are based on finite-
state-machine analysis, i.e. k-CFA or k-object sensitivity,
which have limited analytic power for analyzing dynamic
dispatch or exceptions precisely. Analyzers built using these
techniques have a greater rate of false positives and false
negatives due to this imprecision.
For instance, in the example, both aboutButton and kit-

tyQuoteButton create a non-blocking background thread via
the class SendOut (Lines 19 and 33) wrapped inside a try
block. In the aboutButton code, normal exception handling
occurs at Line 20. In the kittyQuoteButton code, the ex-
ception handler attempts a second malicious action in Lines
36–38 using an Android web view activity to send out loca-
tion information.
This illustrates one of the difficulties in making a precise

analysis of the program, where the flow of the exception is
difficult to track, leading to false positives or false negatives.
Specifically, a finite-state-based analyzer cannot determine
which exception handler block will be used when an excep-
tion is thrown at Line 19. It can (incorrectly) conclude that
the handler block in Lines 36–38 will be invoked. This causes
a false positive where Line 19 is identified as potentially lead-
ing to the malicious behavior in Lines 36–38. In the same
way, a finite-state-based analyzer cannot determine which
exception handler block will be used when an exception is
thrown from Line 33. It may determine that the handler
block on Line 19 is the appropriate exception handler block.
This leads to a false negative, where the malicious behavior
resulting from an exception at Line 33 is missed. The push-
down control-flow analysis model can precisely track excep-
tion handling, so our analyzer identifies the correct handler
block (Line 20) where no malicious behavior exists.
In fact, the fundamental imprecision caused by spurious

control flows due to exceptions has been reported before.
Fu et al. [17] report this problem when testing Java server
apps, and Bravenboer et al. [4, 5] describe the need to com-
bine points-to and exception analysis to attempt to regain
some of this precision. Unlike approaches using finite-state-
based control flow analysis, the pushdown control-flow anal-
ysis used as the foundation for our malware analyzer can pre-
cisely match both normal and exception return flows achiev-
ing lower false positive and false negative rates.

Domain specific challenge: Permutations of Asynchro-
nous multi-entry-points.
The second challenge in analyzing Android apps is caused

by the asynchronous multiple entry points into an Android
application. The Android framework allows developers to
create rich, responsive, and powerful apps by requiring de-
velopers to organize their code into components. Each com-
ponent type serves a different purpose: (1) activities for the
main user-interface, (2) services for non-blocking code or
remote processes, (3) content providers for managing appli-
cation data, and (4) broadcast receivers to provide system-
wide announcements. Applications can register various com-
ponent handlers, either explicitly in code or through a re-
source file (res/layout/filename.xml). Whenever an event
occurs, the callbacks for the event are invoked asynchro-
nously, potentially interleaving their execution with those in
other components. Different apps can also invoke each other
by exposing functionality via an Intent at both the appli-

cation and component level1. Unlike an application with a
single entry point, static analysis for an Android application
must explore all permutations of these asynchronous entry
points. Analyzing all permutations can greatly increase the
expense of the analysis. As a result many analyzers use an
unsound approximation that can lead to false negatives.

Our example illustrates these problems. First, not all of
the callback methods are explicitly registered in code, like
the onCreate method ofKittyQuote and the doInBackground
method of SendOut, aboutButton, nextButton, prevButton,
and kittyQuoteButton2 are registered in an XML layout re-
source file as follows.

<Button
android:id="@+id/button2"
...
android:onClick="prevButton" />

Second, malicious behaviors can be triggered from an en-
try point or series of entry points. For instance, if the pre-
vButton or nextButton methods are called before the about-
Button or kitteyQuoteButton methods, the application will
leak location data gathered from the Exif data of pictures
on the device. In order to avoid missing malicious behavior,
while still performing the analysis efficiently, we need a way
to approximate the possible permutations of the asynchro-
nous multi-entry points without loosing soundness. This
means we cannot use heuristic pruning, but we also do not
want to use a dynamic analysis, since we hope to analyze
the program before we attempt to run it. This leads to our
second contribution, Entry-Point Saturation (EPS), which
can be used to analyze multi-entry points in a sound way.

To summarize the relationship between the challenges, an
unsound approximation of asynchronous entry points can
miss malicious behavior, while any imprecision in the un-
derlying control-flow analysis can result in an analysis that
misses malicious behavior in programs. This problem is fur-
ther exacerbated by additional highly dynamic dispatched
inter-procedural control flows caused by permutations of en-
try points. We need to address both challenges to ensure our
analyzer does not miss malicious behavior in the program.
The next two sections describe our solutions to these chal-
lenges.

3. PUSHDOWN FLOW ANALYSIS FOR OO
In this section, we describe our pushdown control-flow-

analysis for object-oriented programs. We present the anal-
ysis as a small-step semantic analysis following the style of
Felleisen et al. [12] and more recently Van Horn et al. [42].
We first define an object-oriented bytecode language closely
modeled on Dalvik bytecode3. Our language dispenses with
some of the bytecode size optimizations that the Dalvik
bytecode uses to shrink the size of programs, allowing the an-
alyzer to treat Dalvik instructions with similar functionality
as a single instruction. Our language also includes explicit
line number instructions to allow it to more easily relate ma-
licious behavior in the bytecode to the original source code.

1Apps sharing the same Linux user ID are also able to access
each other’s files.
2In code, these are implemented with the onClick method
in an OnClickListener.
3Java code in Android apps are compiled to Dalvik byte-
code.



Then we develop our pushdown control-flow analysis for this
language4.

3.1 Syntax
The syntax of the bytecode language is given in Figure 1.

Statements encode individual actions for the machine; Com-
plex expressions encode expressions with possible side effects
or non-termination; and atomic expressions encode atomi-
cally computable values. There are four kinds of names:
Reg for registers, ClassName for class names, FieldName for
field names, and MethodName for method names. There are
two special register names: ret, which holds the return value
of the last function called, and exn, which holds the most
recently thrown exception.
The syntax is a straightforward abstraction of Dalvik byte-

code, but it is worth examining statements related to excep-
tions in more detail:

• (throws class-name . . . ) indicates that a method can
throw one of the named exception classes,

• (push-handler class-name label) pushes an exception
handler frame on the stack that will catch exceptions
of type class and divert execution to label , and

• (pop-handler) pops the initial exception handler frame
off the stack.

With respect to a given program, we assume a syntactic
metafunction S : Label → Stmt∗, which maps a label to the
sequence of statements that start with that label.

3.2 Abstract Semantics
With the language in place, the next step is to define the

concrete semantics of the language, providing the most ac-
curate interpretation of program behaviors. However, the
concrete semantics cannot be used directly for static anal-
ysis, since it is not computable. Fortunately, we can adapt
the technique of abstracting abstract machines [42] to derive
a sound abstract semantics for the Dalvik bytecode using an
abstract CESK machine.
States of this machine consist of a series of statements,

a frame pointer, a heap, and a stack. The evaluation of
a program is defined as the set of abstract machine config-
urations reachable by an abstraction of the machine tran-
sition relation. Largely, abstract evaluation is defined as

Ê : Stmt∗ → P(Ĉonf ), where Ê(s⃗) =
{
ĉ : Î(s⃗) ;∗ ĉ

}
.

Therefore, abstract evaluation is defined by the set of con-
figurations reached by the reflexive, transitive closure of the
(;) relation, which shall be defined in Section 3.2.1.

Abstract configuration-space.
Figure 2 details the abstract configuration-space for this

abstract machine. We assume the natural element-wise,
point-wise, and member-wise lifting of a partial order across
this state-space.
To synthesize the abstract state-space, we force frame

pointers and object pointers (and thus addresses) to be a
finite set. When we restrict the set of addresses to a finite
set, the machine may run out of addresses to allocate, and

4Although Android apps can include native code, our an-
alyzer only handles Dalvik bytecode. Native code in the
Android API is modeled directly in the analyzer.

program ::= class-def . . .

class-def ::= (attribute . . . class class-name extends class-name

(field-def . . . ) (method-def . . . ))

field-def ::= (field attribute . . . field-name type)

method-def ::= (method attribute . . . method-name (type . . . ) type

(throws class-name . . . ) (limit n) s . . .)

s ∈ Stmt ::= (label label) | (nop) | (line int) | (goto label)

| (if æ (goto label)) | (assign name [æ | ce])
| (field-put æo field-name æv)

| (field-get name æo field-name)

| (push-handler class-name label)

| (pop-handler) | (throw æ) | (return æ)

æ ∈ AExp ::= this | true | false | null | void
| name | int
| (atomic-op æ . . .æ)

| instance-of(æ, class-name)

ce ::= (new class-name)

| (invoke-kind (æ . . .æ)(type . . . ))

invoke-kind ::= invoke-static | invoke-direct
| invoke-virtual | invoke-interafce
| invoke-super

type ::= class-name | int | byte | char | boolean
attribute ::= public | private | protected

| final | abstract
name is an infinite set of frame-local variables

or registers in the parlance of Dalvik byte code.

Figure 1: An object-oriented bytecode adapted from
the Android specification [34].

ĉ ∈ Ĉonf = Stmt∗ × ̂FramePointer × Ŝtore × K̂ont

σ̂ ∈ Ŝtore = Âddr ⇀ V̂al

â ∈ Âddr = ̂RegAddr + ̂FieldAddr

r̂a ∈ ̂RegAddr = ̂FramePointer × Reg

f̂a ∈ ̂FieldAddr = ̂ObjectPointer × FieldName

κ̂ ∈ K̂ont = F̂rame
∗

ϕ̂ ∈ F̂rame = ̂CallFrame + ̂HandlerFrame

χ̂ ∈ ̂CallFrame ::= fun(f̂p, s⃗)

η̂ ∈ ̂HandlerFrame ::= handle(class-name, label)

d̂ ∈ V̂al = P
(

̂ObjectValue + Ŝtring + Ẑ
)

ôv ∈ ̂ObjectValue = ̂ObjectPointer × ClassName

f̂p ∈ ̂FramePointer is a finite set of frame pointers

ôp ∈ ̂ObjectPointer is a finite set of object pointers.

Figure 2: The abstract configuration-space.



when it does, the pigeon-hole principle will force multiple
abstract values to reside at the same address. As a result,

the range of the Ŝtore becomes a power set in the abstract
configuration-space. Crucially, in this machine, the stack is
left unbounded, unlike the final step in the abstracting ab-
stract machine approach. This enables us to faithfully model
both normal function call and return and exception throw
and catch handling intraprocedurally and interprocedurally.
In the next section we detail the essence of the abstract
CESK machine, which is one of the main contributions of
this work.

3.2.1 Abstract transition relation
The machine relies on helper functions to evaluate atomic

expressions and look up field values:

• Î : Stmt∗ → Ĉonf injects a sequence of instructions
into a configuration:

ĉ0 = Î(s⃗) = (s⃗, f̂p0, [], ⟨⟩).

• Â : AExp × ̂FramePointer × Ŝtore ⇀ V̂al evaluates
atomic expressions:

Â(name, f̂p, σ̂) = σ(f̂p,name) [variable look-up].

• ÂF : AExp× ̂FramePointer× Ŝtore×FieldName ⇀ V̂al
looks up fields:

ÂF (æo, f̂p, σ̂,field -name) =
⊔

σ̂(ôp,field -name)

where (ôp, class-name) ∈ Â(æo, f̂p, σ̂).

The abstract transition relation (;) ⊆ Ĉonf × Ĉonf has
rules to soundly model all possible concrete executions of
a bytecode program. In the subsequent subsections, we il-
lustrate the rules that involve objects, function calls, and
exceptions, omitting more obvious rules to save space.

New object creation.
Creating a new object allocates a potentially non-fresh

address and joins the newly initialized object to other values
residing at this store address.

ĉ︷ ︸︸ ︷
([[(assign name (new class-name)) : s⃗]], f̂p, σ̂, κ̂)

; (s⃗, f̂p, σ̂′′, κ̂), where

ôp′ = ̂allocOP(ĉ)

σ̂′ = σ̂ ⊔ [(f̂p,name) 7→ (ôp′, class-name)]

σ̂′′ = ̂initObject(σ̂′, class-name),

The helper function ̂initObject : Ŝtore ×ClassName ⇀ Ŝtore
initializes the object’s fields.

Instance field reference/update.
Referencing a field uses ÂF to lookup the field values and

joins these values with the values at the store location for
the destination register:
([[(field-get name æo field-name) : s⃗]], f̂p, σ̂, κ̂)

; (s⃗, f̂p, σ̂′, κ̂), where

σ̂′ = σ̂ ⊔ [(f̂p,name) 7→ ÂF (æo, f̂p, σ̂,field -name)].

Updating a field first determines the abstract object values
from the store, extracts the object pointer from all the possi-
ble values, then pairs the object pointers with the field name
to get the field address, and finally joins the new values to
those found at this store location:

([[(field-put æo field -name æv) : s⃗]], f̂p, σ̂, κ̂)

; (s⃗, f̂p, σ̂′, κ̂) where

σ̂′ = σ̂ ⊔ [(ôp,field -name) 7→ Â(æv, f̂p, σ̂)]

(ôp,class-name) ∈ Â(æo, f̂p, σ̂).

Method invocation.
This rule involves all four components of the machine.

The abstract interpretation of non-static method invocation
can result in the method being invoked on a set of possible
objects, rather than a single object as in the concrete eval-
uation. Since multiple objects are involved, this can result
in different method definitions being resolved for the differ-
ent objects. The method is resolved5 and then applied as
follows:

ĉ︷ ︸︸ ︷
([[(invoke-kind (æ0 . . .æn) (type0 . . . typen))]] : s⃗, f̂p, σ̂, κ̂)

; ̂applyMethod(m, æ⃗, f̂p, σ̂, κ̂),

where the function ̂applyMethod takes a method definition,
arguments, a frame pointer, a store, and a new continuation
and produces the next configuration:

̂applyMethod(m, æ⃗, f̂p, σ̂, κ̂) = (s⃗, f̂p
′
, σ̂′, (f̂p, s⃗) : κ̂), where

f̂p
′
= ̂allocFP(ĉ)

σ̂′ = σ̂ ⊔ [(f̂p
′
,namei) 7→ Â(æi, f̂p, σ̂)].

Procedure return.
Procedure return restores the caller’s context and extends

the return value in the dedicated return register, ret.

([[(return æ) : s⃗]], f̂p, σ̂, fun(f̂p
′
, s⃗′) : κ̂) ; (s⃗′, f̂p

′
, σ̂′, κ̂),

where σ̂′ = σ̂ ⊔ [(f̂p
′
, ret) 7→ Â(æ, f̂p, σ̂)].

If the top frame is an exception handler (handle) frame,
the abstract interpreter pops until the top-most frame is a
function call (fun) frame:

([[(return æ)]] : s⃗, f̂p, σ̂,handle(class-name label) : κ̂)

; ([[(return æ)]] : s⃗, f̂p, σ̂, κ̂).

Pushing and popping handlers.
Pushing and popping exception handlers is straightfor-

ward:

([[(push-handler class-name label)]] : s⃗, f̂p, σ̂, κ̂)

; (s⃗, f̂p, σ̂,handle(class-name label) : κ̂)

5Since the language supports inheritance, method resolution
requires a traversal of the class hierarchy. This traversal
follows the expected method and is omitted here so we can
focus on the abstract rules.



([[(pop-handler)]] : s⃗, f̂p, σ̂,handle(class-name label) : κ̂)

; (s⃗, f̂p, σ̂, κ̂).

Throwing and catching exceptions.
The throw statement pops entries off the stack until it

finds a matching exception handler:

([[(throw æ)]] : s⃗, f̂p, σ̂, κ̂) ; ĥandle(æ, s⃗, f̂p, σ̂, κ̂),

where the function ĥandle : AExp×Stmt∗× ̂FramePointer×
Ŝtore × K̂ont ⇀ Ĉonf behaves like its concrete counterpart
when the top-most frame is a compatible handler:

ĥandle(æ, s⃗, f̂p, σ̂,handle(class-name ′ label) : κ̂′)

= (S(label), f̂p, σ̂ ⊔ [(f̂p, exn) 7→ (ôp, class-name)], κ̂′).

Otherwise, it pops a frame:

ĥandle(æ, s⃗, f̂p, σ̂,handle( , ) : κ̂′)

= ([[(throw æ)]] : s⃗, f̂p, σ̂, κ̂′)

ĥandle(æ, s⃗, f̂p, σ̂, fun( , ) : κ̂′)

= ([[(throw æ)]] : s⃗, f̂p, σ̂, κ̂′).

Executing the analysis consists of solving for the reachable
control states of the implicit pushdown system in the ab-
stract semantics. To compute the reachable control states of
this pushdown system, we employ standard reachability al-
gorithms from Reps’ et al. [3, 26, 36, 37] work on pushdown-
reachability.

4. ENTRY-POINT SATURATION (EPS)
The pushdown control-flow analysis described in the pre-

vious section provides the foundation for our object-oriented
analysis. Now, we shift our focus to addressing the domain
specific challenge: asynchronous multiple entry points using
Entry-Point Saturation (EPS) and integrating it into push-
down control-flow analysis.
An entry point is defined as any point through which the

system can enter the user application [19]. This means that
any method that can be invoked by the framework is an
entry point. Since there is no single “main” method, the
static analysis must first identify the entry points in the
program. Entry-point discovery is not a challenge, however,
since they are defined by the Android framework. We briefly
summarize possible entry-points here.
There are three categories of entry points, which we gen-

eralize as units. First, all the callback events of components
defined by the Android framework are entry points. These
entry points are designed to be overridden by application
code and are invoked and managed by the framework for the
purpose of component life cycle management, coordinating
among different components, and responding to user events
which are themselves defined to be asynchronous. Second,
asynchronous operations that can be executed in the back-
ground by the framework are considered to be entry points.
These include the AsyncTask class for short background op-
erations, the Thread class for longer operations, and the
Handler class for responding to messages. Finally, all event
handlers in Android UI widgets, such as button, check box,
etc. are entry points. Each UI widget has standard event
listeners defined, where the event handler interface methods
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are meant to be implemented by application code. Entry
points from the first two categories are found by parsing
Dalvik bytecode and organized into a set attached to the
corresponding unit. Entry points from the final category
can also be defined in resource layout files res/layout/file-
name.xml, as illustrated in Section 2. These entry points
can be obtained by parsing resource files before analysis.

After the entry point set for each unit is determined the
real challenge begins. If we want to do a sound analysis, all
the permutations of the entry points need to be considered.
Complicating things further, entry points in the second cat-
egory involve threads so interleaved execution of these entry
points is possible. Other analyzers, such as CHEX, deal
with this complexity using app-splitting, which is unsound
and cannot model the threading case. Here, we present a
sound and efficient technique which directly relies on the un-
derlying pushdown analytic engine presented in Section 3.
Figure 3 illustrates the process.

For each entry point Ei in a unit (represented as a square),
we compute the fixed point via pushdown analysis (refer to
Section 3.2.1). After one round of computation the analysis
returns a set of configurations. We then use the configura-
tion widening technique from Might [33] on the set of config-
urations to generate a widened σ̂i. This abstract component
will be “inherited” by the next entry point in the fixed point
computation. The process repeats until the last entry point
finishes its computation in a unit. In this way, the unit has
reached a fixed point. The next step computes the fixed
point between units. This is computed in a similar fashion
to the intra-unit fixed point computation, so the widened
result σ̂′

n from the previous unit (the left square) partici-
pates in the reachability analysis of the next unit (the right
square).

EPS soundly models all permutations of entry points and
their interleaving execution by passing the store resulting
from analyzing one entry-point as the initial store for the
next entry-point. This gives the“saturated”store for a given
component. The saturated store for a component is similarly
passed as the initial store for the next component. The
final store models every execution path without needing to
enumerate every combination.

EPS has several advantages:

1. It computes the fixed point from bottom up, intra-
entry point, inter-entry point, and inter-unit, in an
efficient manner and significantly simplifies the static
analysis;



2. It not only computes all permutations of entry points,
but also interleaving executions of them;

3. It is sound and easy to prove, because it is based
on widening on the abstract configurations, where the
soundness proof follows the same structure as shown
by Might [33] and so we omit it here.

Applying this technique to the example in Section 2, we
can see that all execution sequences where location infor-
mation is read (nextButton and prevButton) to where it is
leaked through the ACTION VIEW Intent or the doInBack-
ground method of the SendOut AsyncTask are covered and
analyzed.

5. TAINT FLOW ANALYSIS AND LEAST
PERMISSIONS ANALYSIS

As a whole, the previous two sections have described a
solid foundation for static malware analysis. This section
demonstrates two possible applications that build upon the
foundation for specific security analyses.

5.1 Pushdown taint flow analysis with entry-
point saturation

For any mobile application, one of the biggest concerns
is leakage or tampering with private data. We can easily
instrument our framework to perform taint flow analysis to
detect these malicious behaviors. The idea is adapted from
early work by Liang et al. [30], but has been enriched with
Android sensitive data categories as taint values. The taint
flow analysis within our pushdown-based analysis framework
is done by modifying the abstract configuration in Figure 2
as:
Ĉonf = Stmt∗ × ̂FramePointer × Ŝtore × ̂TaintStore ×

K̂ont
and adding the definition for ̂TaintStore, which is a flat

lattice across all taint values:

σ̂T ∈ ̂TaintStore = Âddr ⇀ V̂al

d̂ ∈ V̂al = P
(

̂ObjectValue + Ŝtring + Ẑ + TaintVal
)

TaintVal = Location+ FileSystem+ Sms+ Phone

+Voice+DeviceID+Network+ ID

+TimeOrDate+Display+Reflection

+ IPC+BrowserBookmark+ SdCard

+BrowserHistory+Thread+ Picture

+Contact+ Sensor+Account+Media.

All the transition rules have an additional σ̂T added, op-
erations resemble the ones on σ̂, except that the taint values
are monotonically propagated through the abstract seman-
tics. For example, in a function call, tainted values in argu-
ments are bound to the formal parameters of the functions
(using the ⊔ operation in the taint store σ̂T ), returning ab-
stract taint values bound to a register address with ret, etc.
The detailed formalism is omitted to save space.
The taint propagation analysis is not limited to detecting

sensitive data leakage or tampering. As we discuss in Sec-
tion 8, it can help analysts to find malicious behaviors, such
as when SMS messages are blocked by a trigger condition or
a limited resource is consumed, such as the local file system
on the device being filled.

JDex2SExp

Reports & 

Graphs

Pushdown flow analysis
(live analysis, garbage 

collection, taint analysis, etc)

Multi-entry points 

Saturation

APK

Figure 4: Software Architecture

5.2 Least permissions analysis
Our analysis framework can also detect malicious behav-

iors in the presence of zero-permissions, as the motivating
example demonstrates. However, for apps that request per-
missions, it is highly desirable to analyze how the apps
use the permissions, since over-privileged apps can easily
be exploited by other apps in the Android framework. It
is straightforward to determine this situation in our frame-
work by instrumenting it with knowledge about permissions.
Specifically, we use the data set from PScout [2] to annotate
each API call with permissions that are required for usage.
During reachability analysis, permissions are inferred and
collected. The reached permissions are determined during
the analysis. When the analysis finishes these permissions
can be compared with the set of permissions requested in the
manifest file. This allows us to statically determine whether
an application is over-privileged.

6. THE TOOL: ANADROID
Anadroid is built on the principles illustrated in the pre-

vious sections. Figure 4 briefly sketches the software archi-
tecture.

Anadroid has the following features:

• It consumes off-the-shelf Android application packages
(files with suffix .apk). In Figure 4 JDexSExp extracts
the .dex file by invoking apktool [1] and then disassem-
bles binaries and generates an S-expression IR based
on the smali [16] format;

• It enables human-in-the-loop analysis, by providing
a rich user interface for an analyst to configure the
analyzer, i.e.setting the k value, configuring abstract
garbage collection to be used or not, specifying pred-
icates over the state space, etc., to trade off precision
and performance, as well as semantic predicates to
search analysis results;

• It generates various reports and state graphs. The
following three reports are included: (1) Least permis-
sions presents which permissions are requested by an
app and which permissions are inferred by Anadroid,
reporting whether the app requests more permissions
than it actually uses. (2) The information flow re-
port presents triggers (mainly UI triggers) and tainted
paths that lead from sources to sinks, with contexts
such as class files, method names, and line numbers.
(3) The heat map report shows rough profiling results
of the analyzer, which can be used to help an analyst



understand where the analysis has focused its efforts
and might indicate where an app developer has at-
tempted to hide malicious behavior. Analysis graphs
are presented with an SVG formatted file as a reach-
able control flow graph. It highlights suspicious source
and sink states, as well as showing tainted paths be-
tween them. In addition, an analyst can click on any
state node in the graph for detailed inspection of the
abstract execution at this point in the graph.

In fact, the pushdown analysis based analyzer evolved
from an older version with a similar user interface and out-
put forms (reports and graphs). The previous version of
Anadroid used traditional finite-state methods (mainly k-
CFA and k-object-sensitivity) that are employed in analysis
platforms such as WALA [24], Soot [41], etc.
The old analyzer enables us to compare the traditional

finite-state based analysis with our new pushdown control-
flow analysis to help us determine whether the new analysis
is more effective and efficient. The following section details
this comparison.

7. EVALUATION
We had two teams of analysts analyze a challenge suite of

52 Android apps released as part of the DARPA Automated
Program Analysis for Cybersecurity (APAC) program. Both
teams are composed of the same five people, a mixture of
graduate students and undergraduate students, however, the
applications are shuffled, ensuring the same app is not eval-
uated by the same analyst. The first team analyzed the
apps with a version of Anadroid that uses traditional (finite-
state-machine-based) control-flow-analysis used in many ex-
isting malware analysis tools; the second team analyzed the
apps with a version of Anadroid that uses our enhanced
pushdown-based control-flow-analysis. We measure the time
the analyzer takes, the time human analysts spent review-
ing the results, and the accuracy of the human analyst in
determining if an app is malicious. Accuracy is measured by
comparing the result of human-in-the-loop analysis with the
results released by DARPA. All other factors being equal, we
found a statistically significant (p < 0.05) decrease in time
and a statistically significant increase (p < 0.05) in accuracy
with the pushdown-based analyzer.

The challenge suite:.
Among the apps, 47 are adapted from apps found on

the Android market, Contagio [8], or the developer’s source
repository. A third-party within the APAC project injects
malicious behavior into these apps and uses an anti-diffing
tool on apps with larger code bases to make it difficult to
simply diff the application with the original source code.
The remaining five apps are variants of the original 47 apps
with different malicious behaviors. For example, App1 may
leak location information to a malicious website while App2
may not. The apps range in size from 18.7 KB to 10 MB,
with 11,600 lines of source code in each app on average.

Experiment setup.
The two teams of analysts were given instructions on how

to use the tool (both versions of the tool use similar UIs
and output forms) and some warm-up exercises on a cou-
ple of examples apps. Then they were given examples from
the DARPA-supplied challenge suite. The analysts used

mean p-value

Analyzer Time
Finite 994 sec

Pushdown 560 sec 0.003

Analyst Time
Finite 1.13 hr

Pushdown 0.44 hr 0.0

Accuracy
Finite 71%

Pushdown 95% 0.0005

Table 1: Comparison of finite-state based vs. push-
down malware analysis: Pushdown malware analy-
sis yields statistically significant improvements with
p < 0.05 in both accuracy and analysis time over tra-
ditional static analysis method.

Anadroid (deployed as a web application on our server) to
analyze each app and then record the run time of the ana-
lyzer, the total time the human analysis spent investigating
the results, and an indication if the analyst felt the app was
malicious.

We have made efforts to ensure that other factors re-
mained unchanged so that the only difference was the tool
the analyst used to detect malware. This restriction can
help us gain insight into whether any improvement is made
by our new analysis techniques.

Finally, we compare the analysts results with the DARPA
supplied information on whether an app is malicious to check
accuracy and run statistical analysis using one-way Analy-
sis of Variance (ANOVA) to get mean value and p-value of
analyzer time, analyst time, and accuracy. This allows us to
see the statistical results of the experiment on finite-state-
based-machine versus pushdown-based control-flow analysis.
This is shown in Table 1.

We found that pushdown malware analysis yields statis-
tically significant improvements with p < 0.05 in both accu-
racy and analysis time over traditional static analysis.

8. CASE STUDIES
In this section we report case studies of malware detected

by Anadroid. The malicious behavior of the 52 apps pro-
vided as part of the APAC challenge are summarized in Ta-
ble 2. We separate these behaviors into four categories: data
leakage, data tampering, denial of service attacks, and other
malicious behaviors6.

Data leakage is one of most common, and concerning, ma-
licious behaviors in Android apps [14, 31]. Sensitive data,
including location information, an SMS message, or a de-
vice ID, is exfiltrated to a third-party host via an HTTP
request or Android web component Intent, or to a prede-
fined reachable local file via standard file operations. This
kind of behavior is often embedded in a background An-
droid service component, such as an AsyncTask or a thread,
without interfering with the normal functionality of the app.
Anadroid identifies this malicious behavior in 57% of the 42
malicious Android apps from our test suite that manifest
malicious behavior. We found the taint flow analysis to be
more useful than the least permissions analysis in identify-
ing these behaviors, since half of these apps are designed
to avoid requesting any permissions. For instance, instead
of requesting the ACCESS FINE LOCATION an app can in-
stead read locations from photos stored on the file system
using Exif data and instead of requesting the INTERNET

6Some apps have more than one malicious behavior.



Vulnerabilities Percentile Case examples
Data leakage 57% location, pictures, SMS, ID, etc. ex-filtrated to URL, intents, or predefined local file path.

Data tampering 10% fill local file system with meaningless data, (recursive) deletion of files
DoS attack 11% inode exhaustion via log, battery drainage (brightness, WiFi, etc.)

Other 28% random vibration, block or intercept SMS messages

Table 2: Vulnerabilities summarization

the app can use the default Android web view through an
ACTION VIEW Intent, in both cases avoiding the need to
explicitly request these permissions.
Data tampering, similar to data leakage, can be detected

using static taint flow analysis by determining which opera-
tions are performed on data. Malware in this category might
corrupt the local file system by overwriting file contents with
meaningless data, recursively delete files from the SD card,
or delete SMS messages. In these real-world apps, excep-
tions are frequently used, especially around IO operations.
We found that finite-state-based analysis can lead to many
spurious execution flows in the control graph when used with
EPS. The pushdown-based model, on the other hand, pro-
duces more precise execution flows, which contributes to the
sharp decline in analyst time when using Anadroid.
DoS attack and other malicious behaviors: Denial of Ser-

vice (DoS) on mobile phones exhaust limited resources by
intentionally causing the phone to use these resources in an
inefficient manner. For instance, an app might drain the
battery by setting brightness to maximum or keeping WiFi
on at all times or exhaust file system space by logging every
operation to a file.
Other malicious behaviors include those that do not leak

or tamper with sensitive data but still do not behave the
way the app was intended to behave. For example, a cal-
culator that uses a random number in a calculation rather
than the expected number, or blocks SMS messages in the
onReceive method when a trigger condition is met. These
two categories are more application-dependent and subject
to human judgment, by determining if this functionality is
too far outside the advertised functionality of the app. In
these scenarios, it is important that the analyzer results not
overwhelm analysts.
Anadroid cannot determine precisely whether the appli-

cation is malicious or not by itself. Instead, it identifies sus-
picious application behavior and uses analyst-supplied pred-
icates to help search analysis results for locations of interest
to the analyst.

9. RELATED WORK

Static analysis for Java programs.
Precise and scalable context-sensitive pointer analysis for

Java (object-oriented) programs has been an open problem
for decades. Remarkably, a large bulk of the previous litera-
ture focused on finite-state abstractions for Java programs,
i.e. k-CFA, limited object sensitivity, and their variants. In
work that addresses exception flows [38, 43, 39, 27], the
analysis is often based on context-insensitivity or limited
context-sensitivity, which means they cannot differentiate
the contexts where an exception is thrown or precisely de-
termine which handlers can handle an exception.
Spark [28] and Paddle [29] both use imprecise exception

analysis. Soot [41] also uses a separate exception analysis

implemented by Fu et al. [18] which is not based on pointer
analysis and not integrated into the tool. Bravenboer and
Smaragdakis [4] propose joining points-to analysis and ex-
ception flow analysis to improve precision and analysis run
time in their Doop framework [5]. They have conducted ex-
tensive comparison of different options for polyvariance. It
provides a more precise and efficient exception-flow analysis
than Spark, Paddle, and Soot, with respect of points-to and
exception-catch links with respect to the metric used in [17,
5]. IBM Research’s WALA is a static analysis library de-
signed to support different pointer analysis configurations.
The points-to analyses of WALA can compute which excep-
tions a method can throw, but does not guarantee precise
matches between exceptions and their corresponding han-
dlers.

CFL- and pushdown-reachability techniques.
Earl et al. [10] develop a pushdown reachability algorithm

suitable for pushdown systems, which essentially draws on
CFL- and pushdown-reachability analysis [3, 26, 36, 37]. We
modify their traditional CESK machine to handle object-
oriented programs and extend it to analyze exceptions. This
allows us to apply their algorithm directly to our analysis.

CFL-reachability techniques have also been used to com-
pute classical finite-state abstraction CFAs [32] and type-
based polymorphic control-flow analysis [35]. These analyses
should not be confused with pushdown control-flow analysis,
which is a fundamentally different kind of CFA.

Malware detection for Android applications.
Several analyses have been proposed for Android malware

detection.
Dynamic taint analysis has been applied to identify se-

curity vulnerabilities at run time in Android applications.
TaintDroid [11] dynamically tracks the flow of sensitive in-
formation and looks for confidentiality violations. IPCIn-
spection [15], QUIRE [9], and XManDroid [6] are designed
to prevent privilege-escalation, where an application is com-
promised to provide sensitive capabilities to other applica-
tions. The vulnerabilities introduced by interapp communi-
cation is considered future work. However, these approaches
typically ignore implicit flows raised by control structures in
order to reduce run-time overhead. Moreover, dynamically
executing all execution paths of these applications to detect
potential information leaks is impractical. The limitations
make these approaches inappropriate for computing infor-
mation flows for all submitted applications.

Woodpecker [22] uses traditional data-flow analysis to find
possible capability leaks. Comdroid [7] targets vulnerabili-
ties related to interapp communications. However, it does
not perform deep program analysis as Anadroid does, and
this results in high false positive rates. SmartDroid [44]
targets finding complex UI triggers and paths that lead to
sensitive sinks. It addresses imprecision of static analysis by



combining dynamic executions to filter out infeasible paths
at run time. CHEX [31] focuses on detecting component
hi-jacking by augmenting existing analysis framework us-
ing app-splitting to handle Android’s multiple entry points.
Our tool takes a significantly different approach from it (and
other finite-state-based static analysis tools) in three as-
pects. (1) We use pushdown flow analysis that handles tra-
ditional control-flow and exception flows precisely and effi-
ciently. (2) Our Entry Point Saturation technique is sound,
and we are able to detect interleaving execution of multi-
ple entry points while CHEX handles only permutations of
multi-entry points. (3) Our tool enables human-in-the-loop
analysis by allowing the analyst to supply predicates for the
analyzer allowing it to highlight inspection of deeply dis-
guised malware.
Jeon et al. [25] proposes enforcing a fine-grained permis-

sion system. It limits access to resources that could normally
be accessed by one of Android’s default permissions. Specifi-
cally, the security policy uses a white list to determine which
resources an app can use and a black list to deny access to
resources. In addition, strings potentially containing URLs
are identified by pattern matching and constant propagation
is used to infer more specific Internet permissions. Grace et
al. [23] have also identified unprivileged malicious apps that
can exploit permissions on protected resources through a
privileged agent (or app component in our test suite) that
does not enforce permission checks. Anadroid can also iden-
tify this malicious behavior.
Stowaway [13] is a static analysis tool identifying whether

an application requests more permissions than it actually
uses. PScout [2] aims for a similar goal, but produces more
precise and fine-grained mapping from APIs to permissions.
Our least permission report uses the PScout permission map
as Anadroid’s database. However, they use a different ap-
proach, adapting testing methodology to test applications
and identify APIs that require permissions, while our ap-
proach annotates APIs with permissions and statically ana-
lyzes all executable paths.

10. CONCLUSION
In this paper, we address two challenges in static mal-

ware detection for Android apps: the fundamental challenge
of analyzing object-oriented programs and the Android do-
main specific challenge of asynchronous multi-entry points.
We address the first challenge using pushdown control flow
analysis (PDCFA) to precisely analyze both traditional con-
trol flows and exception flows. The second challenge is ad-
dressed via entry-point saturation (EPS) that when inte-
grated with PDCFA serves as the basis for our analysis en-
gine. We demonstrate a malware analyzer built on this en-
gine, adding pushdown taint flow and least permissions anal-
ysis. We describe Anadroid, a generic analysis framework
for Dalvik-bytecode that enables human-in-the-loop analy-
sis by accepting user-supplied predicates to search analysis
results for detailed inspection. We compare the new analyzer
with a traditional finite-state analyzer using a test suite re-
leased by DARPA APAC project. We find that PDCFA to-
gether with EPS yields statistically significant improvements
in both accuracy and analysis time over traditional static
analysis methods. Our implementation is publicly available:
github.com/shuyingliang/pushdownoo.
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