
Concrete Partial Evaluation in Ruby

Andrew Keep Arun Chauhan
Dept. of Computer Science

Indiana University
{akeep,achauhan}@cs.indiana.edu

1. Introduction

Modern scientific research is a collaborative pro-
cess, with researchers from many disciplines and insti-
tutions working toward a common goal. Dynamic lan-
guages, like Ruby, provide a platform for quickly devel-
oping simulation and analysis tools, freeing researchers
to focus on research instead of spending time develop-
ing infrastructure. Ruby is a particularly good fit, al-
lowing incorporation of existing C libraries, simplifying
Domain Specific Language creation, and providing both
REST and SOAP web-based API libraries. Ruby also
provides RPC-style distributed programming. Concrete
partial evaluation of Ruby begins to address Ruby’s
biggest flaw, performance.

The scientific community has already begun to rec-
ognize the potential of Ruby. An MPI extension to
the language [3, 1] allows quick prototyping of MPI
programs. More recently libraries [6, 5] supporting
MapReduce [2] have appeared. Web frameworks, such
as the popular Ruby on Rails framework, provide tools
for producing and consuming REST APIs.

2. Difficult Static Analysis

Listing 1. Factorial method, multiple meanings

c l a s s Fixnum
def f a c t

(s e l f == 0) ? 1 : s e l f ∗ (s e l f − 1) . f a c t
end

end

5 . f a c t => 120 # y i e l d s e x p e c t e d r e s u l t

c l a s s Fixnum
def ∗ o t h e r

s e l f + o t h e r
end

end

5 . f a c t => 16 # ∗ r e d e f i n e d as + , new r e s u l t

Ruby Source Program

Compiled Ruby Source Program

Source to Source Compiler

Running Ruby Session

(Performs Partial Evaluation)

Core Library "Safety" Rules

(Decides when Partial

Evaluation is Safe)

Figure 1. The partial evaluator

Created by Yukihiro Matsumoto, combining fea-
tures of his favorite programming languages [4],
Ruby’s dynamic-typing, open classes, and other meta-
programming abilities provide power and flexibility to
programmers, but thwart traditional compiler optimiza-
tions. As Listing 1 illustrates, the same expression
5.fact can yield different results, depending on con-
text. While this example is contrived, it demonstrates
that a Ruby compiler must be aware of the context, be-
fore applying any kind of partial evaluation.

A Ruby compiler needs full program source to en-
sure context is known. Analysis then proceeds from the
top down. Despite this limitation, using the interpreter,
as shown in Figure 1, to perform partial evaluation al-
lows it to handle more complex expressions than tradi-
tional compilers.
3. Partial Evaluation and Safety

Even using the interpreter, we cannot partially eval-
uate every expression, since some depend on data or
user-input unavailable until runtime. The compiler must
determine what to partially evaluate. The crux of this
decision rests on the definition of what is “safe” to
evaluate. Traditionally, safe operations do not mod-
ify the evaluation context or dependencies. This is too
strict in Ruby, as many meta-programming techniques
rely on modifying the evaluation context. Fortunately,
Ruby exposes these events and the resulting changes. A

Fourth IEEE International Conference on eScience

978-0-7695-3535-7/08 $25.00 © 2008 IEEE

DOI 10.1109/eScience.2008.141

346

Ruby

Core Library

Interpreter

Ruby Libraries

C Libraries

Written in Ruby

Written in C

Figure 2. Ruby: Matz Ruby Interpreter 1.8.x

method is safe if the receiver and arguments are known,
the block (if provided) is safe, no shared state is modi-
fied, and the methods it calls are safe. A block is safe if
all its expressions are safe.

This recursive idea of safety leads to a stumbling
block—how to decide which Ruby library methods are
safe. No small task, given that the interpreter loads 16
Modules and 147 Classes defining 8236 methods. Even
accounting for duplicate methods, the task is still daunt-
ing. Another wrinkle, illustrated in Figure 2, is that the
Ruby library is written in C, for performance.

4. Analyzing the Core Library

As a young language Ruby is still changing, and the
interpreter and core library span around 2600 C func-
tions, making a tool highly desirable to reduce analy-
sis effort and insulate against changes. First, “safety”
needs to be carefully defined for C. Those C functions
that do not access global variables or call unsafe func-
tions are considered safe. Figure 3 illustrates the anal-
ysis process. The first pass constructs a function list,
categorizing those that access global variables (unsafe),
those that do not access global variables or call other
functions (safe), and the rest (unresolved), recording
their called functions. Roughly 200 external functions,
largley from the C standard library, must be categorized
manually. The external and defined functions are com-
bined and a fixed-point analysis coalesces them into ei-
ther safe or unsafe categories.

Currently, analysis finds less then 300 funcions safe
and almost 2500 unsafe, including externals. Global
variable accesses, such as those that record scope, the
symbol table, and other interpreter flags, account for the
large volume of unsafe functions. In many cases global
variables, such as those Ruby uses to represent modules
and classes are set once and never changed. Semantic
analysis of these variables may allow us to categorize
more functions as safe. This analysis reveals why it is
so difficult to optimize Ruby. We are in the process of
extending the analysis to include semantic information
for some frequently used global variables to be able to
partially evaluate more aggressively.

C Source Files

Find accessed globals and called functions

Identify and Extract External Functions

Flag safe and unsafe C Standard Library

Create final function safety list by combining external
and defined functions and running fixed-point analysis

Figure 3. C analyzer process

5. Further Work

Once the C analysis is refined, implementing a
method to decide what to partially evaluate can be
added to existing infrastructure, to complete the partial
evaluator. We are optimistic the partial evaluator will
improve performance of many Ruby programs. Lessons
learned while implementing it will also enable other op-
timizations such as method inlining. The C code anal-
ysis may also prove useful in bringing true thread par-
allelism to the C implementations of Ruby, something
not currently available in Ruby 1.8.x or Ruby 1.9.

References

[1] C. C. Aycock. MPI Ruby with Remote Memory Ac-
cess. In Proceedings of the 13th IEEE International
Symposium on High Performance Distributed Computing
(HPDC), pages 280–281, 2004.

[2] J. Dean and S. Ghemawat. MapReduce: Simplified Data
Processing on Large Clusters. In Proceedings of the 6th
Symposium on Operating Systems Design and Implemen-
tation, pages 137–150, 2004.

[3] E. Ong. MPI Ruby: Scripting in a Parallel Environ-
ment. Computing in Science and Engineering, 4(4):78–
82, 2002.

[4] About Ruby. On the web. http://www.
ruby-lang.org/en/about/.

[5] Skynet: A Ruby MapReduce Framework. On the web.
http://skynet.rubyforge.org/.

[6] Starfish - Ridiculously Easy Distributed Programming
with Ruby. On the web. http://rufy.com/
starfish/doc/.

347

