
Concrete Partial Evaluation in Ruby
Andrew Keep Arun Chauhan

Deptartment of Computer Science
Indiana University

{akeep,achauhan}@cs.indiana.edu

Introduction

Modern scientific research is a collaborative process,
with researchers from many disciplines and institutions
working toward a common goal. Dynamic languages,
like Ruby, provide a platform for quickly developing
simulation and analysis tools, freeing researchers to fo-
cus on research instead of developing infrastructure.
Ruby fits this role well, allowing:
• Incorporation of existing C libraries
• Simple Domain Specific Language creation
• Support for REST and SOAP web APIs
•Distributed programming, through a simplified Java

RMI style library

Why Ruby?

Ruby is already finding a place in the scientific commu-
nity and industry:
•MPI extension [3, 1] for quick prototyping
•New libraries [6, 5] support MapReduce [2]
•The popular Ruby on Rails framework supports REST-

ful development
Ruby was originally developed by Yukihiro Matsumoto
(Matz), based on his favorite languages [4]. The Ruby
language:
• Is purely object-oriented and dynamically-typed
•Provides open classes, allowing meta-programming
• Supports closures and functional programming
•Provides simple iterators through Ruby blocks

The Challenge

The power of Ruby comes at a price. The current C-
based interpreter, the Matz Ruby Interpreter (MRI), suf-
fers poor performance since the abstract syntax tree
(AST) is used directly by the interpreter. The flexibility
of Ruby complicates compilation because context affects
the meaning of expressions, as illustrated below.
c l a s s Fixnum

def f a c t
i f s e l f == 0

1
e l s e

s e l f ∗ (s e l f − 1) . f a c t
end

end
end

5 . f a c t => 120 # expected r e s u l t

c l a s s Fixnum
def ∗ other

s e l f + other
end

end

5 . f a c t => 16 # new ∗ , new r e s u l t

Ruby MRI presents another challenge by implementing
the core Ruby library in C, for performance reasons. The
C implementation buries much of the semantic informa-
tion about the core library (see figure 1).

Ruby

Core Library

Interpreter

Ruby Libraries

C Libraries

Written in Ruby

Written in C

Figure 1: Ruby: Matz Ruby Interpreter 1.8.x

Our Approach

Despite these challenges, Ruby MRI provides a full eval-
uation environment and access to the AST, allowing a
partial evaluator to evaluate source at compile time, as
the following figure illustrates.

Ruby Source Program

Compiled Ruby Source Program

Source to Source Compiler

Running Ruby Session

(Performs Partial Evaluation)

Core Library "Safety" Rules

(Decides when Partial

Evaluation is Safe)

Figure 2: The partial evaluator

In order to use this environment, the core library must
be analyzed to determine the safety of each method.

C Source Files

Find accessed globals and called functions

Identify and Extract External Functions

Flag safe and unsafe C Standard Library

Create final function safety list by combining external
and defined functions and running fixed-point analysis

Figure 3: C analyzer process

Safe methods are those that do not perform I/O and do
not rely on global variables. A tool to perform the analy-
sis of the C code was developed, both to speed the analy-
sis process, and insulate against changes in Ruby. Figure
3 illustrates how C source files are analyzed.

The Algorithm
Our algorithm first analyzes, then uses the results to par-
tially evaluate Ruby source, producing a new Ruby file.
Currently, the partial evaluator targets whole programs
due to Ruby’s dynamic nature, though we are confident
it can be extended to handle libraries. Analysis proceeds
top-down from the beginning of a program, following a
traditional data-flow approach.

Handle Next
Expression

Already
Marked

Safe
?

Last
Expression

?

Stop

Simple
Expression

?

Mark Safe

Analyze
Method

Load
or

Require
?

Inline File
At Top-level

Ignore Instance
Variable Assignment

Add to Known
Unsafe List

Safe
?

Unsafe
?

Initializer
?

No Loop
or

Branch
?

Data-flow Fixed
Point or Meet

No

No

No

No

No

No

Evaluate known
sub-expressions

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Figure 4: Ruby analyzer process

Method Analysis

Method call analysis is the crux of the algorithm. This
analysis provides:
•A list of called methods with their contexts for further

analysis
•A list of accessed global, class, and instance variables
•A list of parameters and variables captured in any pro-

vided block, which have been modified
•A list of files loaded or required by the method

For methods implemented in C, we rely on the previ-
ously performed C analysis step.

Method Call Safety

Safe method calls do not access shared state, have safe
blocks, and only call safe methods, though we relax the
shared state requirement by taking an “all-or-nothing”
approach, marking methods safe, only if all methods ac-
cessing a shared variable are safe. Analysis runs itera-
tively, until a fixed point is reached, ensuring informa-
tion about shared state is as complete as possible.

Special Cases
Object Initialization The special method new first allo-
cates space, then calls the initialize method for
newly created objects. The partial evaluator must ensure
initialize calls only safe methods.

Loading Modules Ruby loads supporting modules
through the load and require methods, loading files
into the top-level environment, unless a module is spec-
ified. The partial evaluator must mimic this behavior,
analyzing loaded source code as if it were part of the
original program.

Future Work

Once the partial evaluator is complete for whole pro-
grams, we hope to use the insights gained during de-
velopment to:

•Partially evaluate modules, inserting runtime checks
to ensure correctness

•Analyze C extensions to Ruby, exposing their semantic
properties to the partial evaluator

•Perform further specialization, such as method-
inlining

References

[1] C. C. Aycock. MPI Ruby with Remote Memory Access. In Pro-
ceedings of the 13th IEEE International Symposium on High Perfor-
mance Distributed Computing (HPDC), pages 280–281, 2004.

[2] J. Dean and S. Ghemawat. MapReduce: Simplified Data Pro-
cessing on Large Clusters. In Proceedings of the 6th Symposium
on Operating Systems Design and Implementation, pages 137–150,
2004.

[3] E. Ong. MPI Ruby: Scripting in a Parallel Environment. Comput-
ing in Science and Engineering, 4(4):78–82, 2002.

[4] About Ruby. On the web. http://www.ruby-lang.org/en/
about/.

[5] Skynet: A Ruby MapReduce Framework. On the web. http:
//skynet.rubyforge.org/.

[6] Starfish - Ridiculously Easy Distributed Programming with
Ruby. On the web. http://rufy.com/starfish/doc/.

http://doi.ieeecomputersociety.org/10.1109/HPDC.2004.24
http://www.usenix.org/events/osdi04/tech/dean.html
http://www.usenix.org/events/osdi04/tech/dean.html
http://doi.ieeecomputersociety.org/10.1109/MCISE.2002.1014983
http://www.ruby-lang.org/en/about/
http://www.ruby-lang.org/en/about/
http://www.ruby-lang.org/en/about/
http://skynet.rubyforge.org/
http://skynet.rubyforge.org/
http://skynet.rubyforge.org/
http://rufy.com/starfish/doc/
http://rufy.com/starfish/doc/
http://rufy.com/starfish/doc/

