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A NANOPASS FRAMEWORK FOR COMMERCIAL
COMPILER DEVELOPMENT

Andrew W. Keep

Contemporary commercial compilers typically handle sophisticated high-level source languages, gen-

erate efficient assembly or machine code for multiple hardware architectures, run under and generate

code to run under multiple operating systems, and support source-level debugging, profiling, and

other program development tools. As a result, commercial compilers tend to be among the most

complex of software systems.

Nanopass frameworks are designed to help make this complexity manageable. A nanopass framework

is a domain-specific language, embedded in a general purpose programming language, to aid in

compiler development. A nanopass compiler is comprised of many small passes, each of which

performs a single task and specifies only the interesting transformations to be performed by the pass.

Intermediate languages are formally specified by the compiler writer, which allows the infrastructure

both to verify that the output of each pass is well-formed and to fill in the uninteresting boilerplate

parts of each pass.

Prior nanopass frameworks were prototype systems aimed at educational use, but we believe that a

suitable nanopass framework can be used to support the development of commercial compilers. We

have created such a framework and have demonstrated its effectiveness by using the framework to

create a new commercial compiler that is a “plug replacement” for an existing commercial compiler.

The new compiler uses a more sophisticated, although slower, register allocator and implements

nearly all of the optimizations of the original compiler, along with several “new and improved”

optimizations. When compared to the original compiler on a set of benchmarks, code generated by

the new compiler runs, on average, 21.5% faster. The average compile time for these benchmarks

is less than twice as long as with the original compiler. This dissertation provides a description of

the new framework, the new compiler, and several experiments that demonstrate the performance

and effectiveness of both, as well as a presentation of several optimizations performed by the new

compiler and facilitated by the infrastructure.
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CHAPTER 1

Introduction

Compilers are traditionally structured as series of passes, each of which reads an input file and

produces an output file. This was originally necessary because an entire source program, or a

representation of it, could not generally fit in memory. To avoid excessive overhead for reading

and writing intermediate files, it was desirable to minimize the number of passes [8]. Contemporary

commercial compilers, however, are expected to generate efficient code for multiple architectures, run

under multiple operating systems, and support source-level debugging, profiling, and other program

development tools. A compiler that meets these expectations with a minimal number of passes is

likely to be complex and difficult to modify or extend. For example, it might be difficult or impossible

to add a new transformation that must run between two existing transformations performed by the

same pass.

Fortunately, contemporary hardware systems have vastly larger memories and even larger virtual

address spaces so that, while compilers are still structured as series of passes, intermediate repre-

sentations can be maintained in memory, which obviates the intermediate files and greatly reduces

the incentive to minimize the number of passes. Thus, a natural way to manage the complexity of

a contemporary compiler is to break up the compiler into many smaller passes, just as one would

modularize any complex program as a means to make it more manageable.

A nanopass infrastructure is intended to support taking the above approach to its natural extreme,

in which a compiler is structured as a series of many small passes. A nanopass framework is

an embedded domain specific language (DSL) that supports compiler development. A nanopass

compiler is comprised of many small passes, each of which performs a single task and specifies

only the interesting transformations to be performed by the pass. The compiler writer formally

specifies each intermediate language over which a pass operates. The nanopass framework uses this

information to verify that the output of each pass is well-formed and to fill in the uninteresting,

boilerplate parts of each pass.

In 2004, Dipanwita Sarkar, Oscar Waddell, and R. Kent Dybvig submitted a paper to the In-

ternational Conference on Functional Programming (ICFP) [74] that positioned a prior nanopass
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1. INTRODUCTION

framework as a tool for both educational use and for the development of commercial compilers. The

reviewers accepted the paper, but only after it was repositioned to describe the nanopass framework

as a tool for educational use only. They did not believe that the nanopass framework could be used

to write a commercial compiler, and, in retrospect, they were correct. The nanopass framework

developed by Sarkar et al. demonstrated the viability of a nanopass framework but was never fully

tested, even in an educational setting.

We believe that a suitably improved nanopass framework can be used to support the development

of commercial compilers. To this end, we devised a research plan to improve the prototype nanopass

framework and to build a new commercial compiler with it. We have improved the prototype frame-

work and have demonstrated its effectiveness by using the framework to create a new commercial

compiler that is a “plug replacement” for the commercial Chez Scheme [33] compiler for the Scheme

programming language [34,83]. The Chez Scheme compiler was designed to generate efficient code

and is almost absurdly fast. The goal for the new compiler is to generate code that is on par with the

code generated by the existing Chez Scheme compiler and to do so with compile time that is within

a factor of two of the existing compiler. The extra compile time allows us to experiment with a more

sophisticated, although slower, register allocator. The new compiler also implements nearly all of

the optimizations of the original compiler, along with several “new and improved” optimizations.

The new compiler meets the goals set out in the research plan. When compared to the original

compiler on a set of benchmarks, the benchmarks, for the new compiler run, on average, between

15.0% and 26.6% faster, depending on the architecture and optimization level. The compile times

for the new compiler are also well within the goal, with a range of 1.64 to 1.75 times slower.

We have also developed a nanopass version of the student compiler used in a course on compiler design

and implementation. The new student compiler was implemented over the course of a weekend, based

on the existing student-compiler source code. The nanopass version of the class compiler runs a small

test suite 52% faster, and shrinks the source code for passes by 21% by eliminating boilerplate code.

The specification for the new nanopass framework is described in Chapter 2, using examples from

the class compiler. Chapter 2 also presents the history of nanopass frameworks and a comparison of

the new nanopass framework with the one developed by Sarkar et al., upon which the new framework

is based.

The new nanopass framework is evaluated in Chapter 3. This chapter starts with a comparison of

the two versions of the student compiler and then presents a comparison of the original and nanopass

versions of the Chez Scheme compiler. The two versions of the Chez Scheme compiler have a similar
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1. INTRODUCTION

front end but differ significantly in the back end. These differences are described, and two of the

front-end passes are compared to illustrate the overhead in the use of the nanopass framework, when

compared with the original internal representation. This chapter also presents a comparison of the

performance of a set of benchmarks compiled with the two versions of the Chez Scheme compiler.

The compile time of the two compilers is also compared. The compile time is broken down into

front-end and back-end times to determine the source of compile-time overhead.

The new compiler performs implicit cross-library optimization in addition to supporting the original

compiler’s library-group form. Normally, each Revised6 Report on Scheme (R6RS) library or top-

level program [83] would be a separate compilation unit, with no optimizations across the library

boundaries. The library-group form allows several R6RS libraries and optionally an R6RS top-

level program to be combined into a single compilation unit. This allows optimization to occur across

the library boundaries, as though the libraries were included in a single source file. The implicit

cross-library optimizations are not as general as the library-group form but allow for some constant

propagation and procedure inlining across library boundaries, even when the library-group form

is not used. Chapter 4 of this dissertation contains a description of the library-group form and

the implicit cross-library optimizations.

The new compiler also supports an improved and simplified version of the closure optimizations found

in the original Chez Scheme compiler. The new closure optimization statically justifies the removal

of 56.94% of closures and eliminates 44.89% of the total free-variables, which results in 58.25% less

memory allocation and 58.58% fewer memory references due to closures. This optimization is among

the reasons that the new compiler performs better on the benchmarks. Chapter 5 of this dissertation

provides a description of the closure conversion algorithm and its implementation in detail.

The new nanopass framework and the new Chez Scheme compiler demonstrate that the nanopass

framework is a viable tool for writing commercial compilers. The experience of working on the

new compiler also showed areas into which the nanopass framework could be extended to make

commercial compiler development even easier. Chapter 6 presents a discussion of this future work

and concludes the dissertation.

Background

While a nanopass framework could be developed in almost any programming language, both the

prototype nanopass framework and the new nanopass framework are embedded in Scheme and

implemented using the syntax-case macro expander [31, 40]. Some familiarity with the Scheme

programming language is necessary to understand the description and examples in Chapter 2. A

3



1. INTRODUCTION

passing knowledge of Scheme macros and macro expansion is also useful to understand the description

of the syntactic forms provided by the nanopass framework.

The description of the nanopass framework in Chapter 2 also assumes some familiarity with the

match form. The match form is a Scheme extension used to pattern match S-expressions. For

example, we could use match to extract the numbers from (a 1 2 3 4) as follows:

(match '(a 1 2 3 4)

[(a ,x0 ,x1 . . .) (list x1 x0)]) ⇒ ((2 3 4) 1)

The pattern (a ,x0 ,x1 . . .) matches a list that starts with the symbol a and contains one or

more additional items, where the first item is bound to x0 and the remaining items are bound in a

list to x1. The unquote (,) in the pattern indicates that x0 and x1 are pattern variables and the

ellipsis (. . . ) indicates that zero or more items should be matched by the preceding pattern, in this

case ,x1.

In the context of the micropass compiler described in Chapter 2, which inspired the nanopass

framework, match can be used to perform term rewriting, where an input-language S-expression is

matched and an output-language S-expression is constructed. For example, we could write a pass

to remove one-armed if and replace the multi-expression body of lambda and letrec from the

following language:

e,body ∈ Expr −→ x
| (quote d)
| (if e0 e1)
| (if e0 e1 e2)
| (begin e* ... e)
| (lambda (x* ...) body* ... body)
| (letrec ([x* e*] ...) body* ... body)
| (e e* ...)

where x is a symbol and represents a variable reference, and d represents a Scheme datum, to the

language:

e,body ∈ Expr −→ x
| (quote d)
| (if e0 e1 e2)
| (begin e* ... e)
| (lambda (x* ...) body)
| (letrec ([x* e*] ...) body)
| (e e* ...)

4



1. INTRODUCTION

The pass could be written using match as follows:

(define make-begin

(lambda (e* e)

(if (null? e*)

e

`(begin ,@e* ,e))))

(define simplify

(lambda (x)

(match x

[,x (guard (symbol? x)) x]

[(quote ,d) `(quote ,d)]

[(if ,e0 ,e1)

(let ([e0 (simplify e0)] [e1 (simplify e1)])

`(if ,e0 ,e1 (void)))]

[(if ,e0 ,e1 ,e2)

(let ([e0 (simplify e0)] [e1 (simplify e1)] [e2 (simplify e2)])

`(if ,e0 ,e1 ,e2))]

[(begin ,e* . . . ,e)

(let ([e* (map simplify e*)] [e (simplify e)])

(make-begin e* e))]

[(lambda (,x* . . .) ,body* . . . ,body)

(let ([body* (map simplify body*)] [body (simplify body)])

`(lambda (,x* . . .) ,(make-begin body* body)))]

[(letrec ([,x* ,e*] . . .) ,body* . . . ,body)

(let ([e* (map simplify e*)]

[body* (map simplify body*)]

[body (simplify body)])

`(letrec ([,x* ,e*] . . .) ,(make-begin body* body)))]

[(,e ,e* . . .)
(let ([e (simplify e)] [e* (map simplify e*)])

`(,e ,e* . . .))])))

Here, the make-begin helper builds a begin form when there is more than one expression in the

body of a begin, lambda, or letrec. The simplify procedure matches each of the forms of the

input language, recurs through the sub-expressions of each form, and constructs a new output term

in the output language.

The match form also supports catamorphisms [68] to recur through the sub-expressions of the input

forms. A catamorphism, for our purposes, recurs through sub-forms in the language until a terminal

case, such as x or (quote d), is found. The simplify pattern can be rewritten to use catamorphisms

as follows:

(define simplify

(lambda (x)

5



1. INTRODUCTION

(match x

[,x (guard (symbol? x)) x]

[(quote ,d) `(quote ,d)]

[(if ,[e0] ,[e1]) `(if ,e0 ,e1 (void))]

[(if ,[e0] ,[e1] ,[e2]) `(if ,e0 ,e1 ,e2)]

[(begin ,[e*] . . . ,[e]) (make-begin e* e)]

[(lambda (,x* . . .) ,[body*] . . . ,[body])

`(lambda (,x* . . .) ,(make-begin body* body))]

[(letrec ([,x* ,[e*]] . . .) ,[body*] . . . ,[body])

`(letrec ([,x* ,e*] . . .) ,(make-begin body* body))]

[(,[e] ,[e*] . . .) `(,e ,e* . . .))])))

Here, the square brackets ([ ]) in the syntax ,[e0] indicate that a catamorphism should be applied.

The version of the simplify procedure using catamorphisms implements the same algorithm as the

preceding simplify procedure but is more succinct. The match form’s syntax is the inspiration for

the S-expression pattern matching and templates in the nanopass framework.

This dissertation also describes several techniques common to compiler implementation and opti-

mization. The examples and descriptions of the nanopass framework in Chapter 2 and the description

of the original and new Chez Scheme compilers in Chapter 3 mention a few algorithms the reader

should be familiar with.

The first is free-variable analysis, in which the free variables of a procedure are identified. A free

variable is a variable not bound as a formal or through a local binding form, such as let or letrec,

within the body of a procedure. Free-variable analysis traverses the body of each procedure to gather

the set of referenced and assigned variables. This process proceeds inner-most to outer-most, with

variables removed from the free-variable set as the binding form that names them is found. When

a λ-expression is found, the free-variable set is recorded for this λ-expression.

In languages with higher-order procedures, such as Scheme, ML, Haskell, or JavaScript, the free-

variable set for each λ-expression can be used for closure conversion. A closure is a first-class object

that encapsulates some representation of a procedure’s code (e.g., the starting address of its machine

code), along with some representation of the lexical environment. A closure-conversion algorithm

makes the representation of a closure explicit. Our closure-conversion algorithm, discussed in detail

in Chapter 5, uses the results of free-variable analysis to determine what values should be stored in

the closure for each procedure.

In a compiler, some passes are said to be flow sensitive when they must follow the control flow of a

program or procedure. A forward-flow analysis is a flow-sensitive analysis that begins at the entry

point to a program or procedure and follows the control flow to the exit point of the program or

6



1. INTRODUCTION

procedure. A reverse-flow analysis is a flow-sensitive analysis that begins at the exit point of a

program or procedure and proceeds in reverse order up the control flow to the entry point of the

program or procedure. A flow-insensitive pass is not constrained by the control flow of a program

or procedure.

Chapter 3 also discusses register allocation. Register allocation is the process by which program

variables and compiler-introduced temporaries are allocated to register or frame-location homes.

This process is complicated because CPUs have a limited number of registers, e.g., just 8 general

purpose registers on an x86 chip and just 16 on an x86 64 chip, but all of the variables in a program

must either be located in a register or in memory. Because registers provide faster access and

mutation, it is generally desirable to place variables in registers. In some cases, operand constraints

imposed by the target machine may require that operands be placed in registers. The process

of meeting machine constraints is called instruction selection, and we consider this to be part of

the register allocation process. Instruction selection chooses the machine instructions to perform an

operation and enforces the operand constraints for each instruction, introducing unspillable variables

if needed. An unspillable variable is a variable with a short lifetime that cannot be spilled to the

frame.

The original Chez Scheme compiler uses a simple linear register allocator with a lazy save and restore

strategy [21] for saving variables around non-tail calls. This register allocator tracks the liveness of

registers by processing the body of each procedure in a reverse-flow analysis. A variable, register,

or frame location is live when the value it contains might still be referenced. When the value of a

variable, register, or frame location is set it is said to be killed. A live analysis performs a reverse-flow

analysis to determine when variables, registers, or frame-locations are live.

The new Chez Scheme compiler uses a graph-coloring register allocator [17]. A graph-coloring

register allocator first constructs a conflict graph using live analysis and then attempts to “color”

each node of the graph in a way that no two nodes that share an edge have the same color. The

conflict graph records the conflicts between variables and registers (or between variables and frame

variables when the related frame allocation is performed). A variable x conflicts with a variable,

register, or frame-location y when x and y are live at the same time and might hold different values.

When a graph cannot be colored, one or more variables must be spilled in order to create a graph

that can be colored. Spilled variables are allocated to frame locations through frame allocation.

After frame allocation, instruction selection is performed to ensure that spilled variables do not

cause the instructions to violate machine operand constraints.

7



1. INTRODUCTION

Finally, Chapter 3 briefly describes the source optimizer [92]. The source optimizer performs

bounded, aggressive procedure inlining along with constant propagation, copy propagation, and

constant folding. Inlining copies a procedure to the position where it is called. Constant propaga-

tion is an optimization that replaces the references to a variable with a constant, when the variable

is bound to a constant and is unassigned between the binding and the reference. Copy propagation

is an optimization that replaces references to a variable with a second variable when the first vari-

able is bound to the second, and the variables are unassigned. Constant folding is an optimization

that allows a computation that would normally occur at run time to be done at compile time when

the operation is known and the operands are constant. Together these three optimizations help to

reduce the increase in size due to inlining.

Additional information about compiler development in Scheme can be found in the description of

an earlier compiler course [61] by Hilsdale et al. and in the description of building a compiler from

scratch [50] by Ghuloum. Also, the reader may find the following textbooks useful: for a general

knowledge of compiling functional programming languages, Compiling with Continuations [10]; and

for a general knowledge of compiler techniques and terms, Compilers: Principles, Techniques, and

Tools [7] by Aho et al.
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CHAPTER 2

The Nanopass Framework

2.1. Introduction

The idea of writing a compiler as a series of small, single-purpose passes grew out of a course on

compiler construction taught by Dan Friedman in 1999 at Indiana University. The following year,

R. Kent Dybvig and Oscar Waddell joined Friedman to refine the idea of the micropass compiler

into a set of assignments that could be used in a single semester to construct a compiler for a

subset of Scheme. The micropass compiler uses an S-expression pattern matcher developed by

Friedman to simplify the matching and rebuilding of language terms. Erik Hilsdale added a support

for catamorphisms [68] that provides a more succinct syntax for recurring into sub-terms of the

language, which further simplified pass development.

Passes in a micropass compiler are easy to understand, as each pass is responsible for just one trans-

formation. The compiler is easier to debug when compared with a traditional compiler composed

of a few, multi-task passes. The output from each pass can be inspected to ensure that it meets

grammatical and extra-grammatical constraints. The output from each pass can also be tested in

the host Scheme system to ensure that the output of each pass evaluates to the value of the initial

expression. This makes it easier to isolate broken passes and identify bugs. The compiler is more

flexible than a compiler composed of a few, multi-task passes. New passes can easily be added be-

tween existing passes, which allows experimentation with new optimizations. In an academic setting,

writing compilers composed of many, single-task passes is useful for assigning extra compiler passes

to advanced students who take the course.

Micropass compilers are not without drawbacks. First, efficiency can be a problem due to pattern-

matching overhead and the need to rebuild large S-expressions. Second, passes often contain boiler-

plate code to recur through otherwise unchanging language forms. For instance, in a pass to remove

one-armed if expressions, where only the if form changes, other forms in the language must be han-

dled explicitly to locate embedded if expressions. Third, the representation lacks formal structure.

9



2. THE NANOPASS FRAMEWORK

The grammar of each intermediate language can be documented in comments, but the structure is

not enforced.

A nanopass framework addresses these problems with two syntactic forms: define-language and

define-pass. A define-language form formally specifies the grammar of an intermediate lan-

guage. A define-pass form defines a pass that operates on one language and produces output

in a possibly different language. Formally specifying the grammar of an intermediate language and

writing passes based on these intermediate languages allows the nanopass framework to use a record-

based representation of language terms that is more efficient than the S-expression representation,

autogenerate boilerplate code to recur through otherwise unchanging language forms, and generate

checks to verify that the output of each pass adheres to the output-language grammar.

The summer after Dybvig, Waddell, and Friedman taught their course, Jordan Johnson implemented

an initial prototype of the nanopass framework to support the construction of micropass compilers. In

2004, Dipanwita Sarkar, Oscar Waddell, and R. Kent Dybvig developed a more complete prototype

nanopass framework for compiler construction and submitted a paper on it to ICFP [74]. The

initial paper focused on the nanopass framework as a tool capable of developing both academic and

commercial quality compilers. The paper was accepted but on the condition that it be refocused only

on academic uses. The reviewers were not convinced that the framework or nanopass construction

method was capable of supporting a commercial compiler. In retrospect, the reviewers were right.

Sarkar implemented only a few of the passes from the compiler used in the course on compilers. This

implementation showed that the nanopass framework was viable, but it did not support the claim

that the nanopass framework could be used for a commercial compiler. In fact, because the class

compiler was started but never completed, it is unclear whether the prototype was even up to the

task of writing the full class compiler.

The nanopass framework described in this dissertation improves on the prototype developed by

Sarkar. In this framework, language definitions are no longer restricted to top-level definitions.

Additionally, passes can accept more than one argument and return zero or more values. Passes

can be defined that operate on a subset of a language instead of being restricted to starting from

the entry-point nonterminal of the language. Passes can also autogenerate nonterminal transformers

not supplied by the compiler writer. The new nanopass framework also defines two new syntactic

forms, nanopass-case and with-output-language, that allow language terms to be matched and

constructed outside the context of a pass.

10
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Although the nanopass framework defines just two primary syntactic forms, the macros that imple-

ment them are complex, with approximately 4600 lines of code. In both the prototype and the new

version of the nanopass framework, the define-language macro parses a language definition and

stores a representation of it in the compile-time environment. This representation can be used to

guide the definition of derived languages and the construction of passes. Both also create a set of

record types used to represent language terms at run time, along with an unparser for translating

the record representation to an S-expression representation. Finally, both create meta-parsers to

parse S-expression patterns and templates.

The define-pass form, in both versions of the framework, operates over an input-language term and

produces an output-language term. The input-language meta-parser generates code to match the

specified pattern as records, as well as a set of bindings for the variables named in the pattern. The

output-language meta-parser generates record constructors and grammar-checking code. Within a

pass definition, a transformer is used to define a translation from an input nonterminal to an output

nonterminal. Each transformer has a set of clauses that match an input-language term and construct

an output-language term. The pattern matching also supports catamorphisms [68] for recurring into

language sub-terms.

2.2. The Prototype Framework

The prototype nanopass framework developed by Sarkar [73] was an important first step toward

the nanopass framework described in this dissertation. The prototype was designed with the class

compiler in mind and provided a basis for the current nanopass framework.

The prototype provides two syntactic forms, define-language and define-pass. The framework

also provides a language->s-expression form that returns a fully specified language definition

for a named language. This can be helpful when working with a language that is defined as the

extension of a base language, particularly when the base language is also an extended language.

The define-language form allows the compiler writer to specify a set of terminals and nonterminals

for the language. It also includes a definitions clause to specify a set of definitions to be included

when a language term is unparsed. The definitions clause is intended to allow an unparsed

language to be run in the host Scheme system. The define-language syntax has two main forms,

the full language definition form that fully specifies a language and an extended language form that

allows the compiler writer to specify what should be removed from and added to a base language to

define a language with the desired grammar.
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The define-language form has three programmer-visible outputs: a parser to parse an S-expression

representation into a record representation; an unparser to create an S-expression representation

from the record representation; and the language definition, a compile-time value associated with

the identifier used to define the language. The compile-time language specification is represented

both (1) as an S-expression that lists the terminals and nonterminals; and (2) as an annotated

version of this representation that also includes the record names, record predicates, and record

accessors for the records used to represent language terms.

In addition to these visible products, define-language creates a set of record definitions to represent

intermediate-language programs in the language. The define-language form also creates a meta-

parser that the define-pass macro uses to parse S-expression patterns into a set of record predicate

checks as well as templates into a set of record constructor calls and argument-type checks. The

meta-parser is defined as a meta-definition, i.e., an ordinary Scheme function that can be called only

during expansion. This limits where define-language can be used, as the meta-definition must be

visible to the Scheme eval procedure, which effectively requires that the language definition be at

the top level of a program or library.

The define-pass form specifies a function for operating over an input language and constructs

a term in a (possibly different) output language. The define-pass form has three main parts: a

definitions clause that contains Scheme definitions in the same scope as the transformer clauses, a

set of transformer clauses for operating over the nonterminals of the input language, and a restricted

body form. The definitions clause is optional. The body is restricted to either an empty list or

a let-values expression that binds the return values of a transformer and returns the first return

value, which is the language term. When the empty list is specified as the body, the first transformer

in the pass is considered the entry transformer, the transformer is automatically called, and its first

return value is returned by the pass.

Each transformer in define-pass has a signature that includes a name, the input-language non-

terminal, a list of additional arguments with initial values, an output-language nonterminal, and

a list of procedures for combining extra return values for use in autogenerated clauses. A set of

user-specified clauses follows the transformer signature. Each clause uses an S-expression pattern to

match the incoming language term, an optional guard clause, and a right-hand-side expression that

produces the output-language expression.

The pattern supports a catamorphism syntax for recurring on sub-nonterminals of the matched

production. The catamorphism syntax requires a binding for the output-language term and each
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extra return value produced by the recursive call. Optionally, the input-language term can also be

bound so that it can be referred to in the guard. The target of the catamorphism can be optionally

specified as a procedure expression. When the target is not specified, the input type, the output

type, and the number of extra return values expected are compared to find matching transformers. If

exactly one transformer is found, it is used as the target for the catamorphism; otherwise, a syntax

violation occurs. When the catamorphism is used to call a transformer that expects additional

arguments, the initial values specified in the target transformer signature are used.

Within the right-hand-side expression, quasiquote is bound to a macro that constructs terms in

the output language for the nonterminal specified by the transformer signature. To construct terms

for other nonterminals, an additional form, in-context, is also bound to allow the compiler writer

to specify a different nonterminal in the output language, which effectively rebinds quasiquote.

Within the transformer, a clause for a production can be omitted when the input-language nonter-

minal and output-language nonterminal both contain the same production. In fact, transformers for

nonterminals that have the same set of productions in the input language and output language can

omit all of the clauses, and the define-pass form will fill in the necessary recursive calls. Missing

clauses are autogenerated to recur through any sub-nonterminal in the production before producing

the appropriate output-language term. The target of the recursion is determined by looking for a

transformer that expects the field type as input. This is a different procedure from the one used

to find the target of a catamorphism call. When the clause supplied by the compiler writer for a

production does not match the most general case of the production, the nanopass framework will

autogenerate a clause for this production. This can happen, for instance, if the user-supplied pat-

tern includes a match for a specific sub-nonterminal or if the compiler writer specifies a guard. Such

clauses run only after clauses specified by the compiler writer are exhausted.

The define-pass form creates an internal function definition for each transformer and converts the

S-expression pattern into a set of record predicate calls to determine, along with the optional guard,

whether the pattern matches. Once the pattern is matched and the guard, if any, is satisfied, the

catamorphism calls are performed; and the body is executed.

The prototype nanopass framework demonstrated that a nanopass framework is a viable idea. How-

ever, the prototype was never fully tested, as only the first 20 passes of the class compiler (out of

about 50) were specified. The register allocator and code generator were never completed. Due to

the way that the class compiler is written, the register allocator requires a predicate to determine

when register allocation is complete, and the code generator requires a pass that has no output value
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and emits the assembly language for the program to the standard output port. While some work had

been done to allow passes with no output language, this feature was never tested and using it leads

to errors. There was no direct way to write the predicate for the register allocator. In both cases,

these limitations could be worked around but not without the pass doing extra work to produce a

language term that would be discarded.

2.3. New Framework Specification

The new nanopass framework builds on the prototype described in the preceding section. The

examples in this section are pulled from a nanopass version of the class compiler.

2.3.1. Defining languages. The nanopass framework operates over a set of compiler-writer-

defined languages. Languages defined in this way are similar to context-free grammars, in that

they are composed of a set of terminals, a set of nonterminal symbols, a set of productions for each

nonterminal, and a start symbol from the set of nonterminal symbols. We refer to the start symbol

as the entry nonterminal of the language. An intermediate language definition for a simple variant

of the Scheme programming language, post macro expansion, might look like:

(define-language Lsrc

(entry Expr)

(terminals

(uvar (x))

(primitive (pr))

(datum (d)))

(Expr (e body)

x

(quote d)

(if e0 e1 e2)

(begin e* . . . e)

(lambda (x* . . .) body)

(let ([x* e*] . . .) body)

(letrec ([x* e*] . . .) body)

(set! x e)

(pr e* . . .)
(call e e* . . .) => (e e* . . .)))

The Lsrc language defines a subset of Scheme suitable for the compiler course. It is the output

language of a more general “parser” or simple expander that parses S-expressions into Lsrc language

forms. The Lsrc language consists of a set of terminals (listed in the terminals form) and a single

nonterminal Expr. The terminals of the language are uvar (for unique variables), primitive, and

datum (for the subset of Scheme datum supported by this language). The compiler writer must

14



2. THE NANOPASS FRAMEWORK

supply a predicate corresponding to each terminal, lexically visible where the language is defined.

The nanopass framework derives the predicate name from the terminal name by adding a ? to the

terminal name. In this case, the nanopass framework expects uvar?, primitive?, and datum? to

be lexically visible where Lsrc is defined.

Each terminal clause lists one or more meta-variables, used to refer to the terminal in nonterminal

productions. Here, x refers to a uvar, pr refers to a primitive, and d refers to a datum.

For our class compiler, a uvar is represented as a symbol with the format name.num. The predicate

below ensures that the symbol is well-formed, with a numeric string that cannot be misinterpreted

as another number, since part of the goal of the uvar representation is uniqueness.

(define uvar?

(lambda (x)

(and (symbol? x)

(well-formed? x))))

The class compiler also selects a subset of primitives from Scheme and represents these primitives

as symbols. The primitive? predicate is defined as follows:

(define primitive?

(lambda (x)

(memq x '(+ - * car cdr cons make-vector vector-length vector-ref void

< <= = >= > boolean? eq? fixnum? null? pair? vector? procedure?

set-car! set-cdr! vector-set!))))

The class compiler limits the Scheme datum that can be represented to constants, pairs, and vectors,

where constants are limited to fixed-size integers (fixnums), #t, #f, and null. The datum? predicate

can be defined as follows:

(define constant?

(lambda (x)

(or (boolean? x) (null? x) (fixnum? x))))

(define datum?

(lambda (x)

(or (constant? x)

(and (pair? x) (datum? (car x)) (datum? (cdr x)))

(and (vector? x)

(let loop ([i (vector-length x)])

(or (fxzero? i)

(let ([i (fx- i 1)])

(and (datum? (vector-ref x i))

(loop i)))))))))
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The Lsrc language also defines the nonterminal Expr. Nonterminals start with a name, followed

by a list of meta-variables and a set of grammar productions. In this case, the name is Expr, and

two meta-variables, e and body, are specified. Just like the meta-variables named in the terminals

clause, nonterminal meta-variables are used to represent the nonterminal in nonterminal productions.

Each production follows one of three forms. It is a single meta-variable, an S-expression that starts

with a keyword, or an S-expression that does not start with a keyword (referred to as an implicit

production). The S-expression forms cannot include keywords past the initial starting keyword. In

Lsrc, the x production is the only single meta-variable production and indicates that a stand-alone

uvar is a valid Expr. The only implicit S-expression production is the (pr e* . . .) production,

and it indicates a primitive call that takes zero or more Exprs as arguments. (The * suffix on

e is used by convention to indicate plurality and does not have any semantic meaning: It is the

. . . that indicates that the field can take zero or more Exprs.) The (call e e* . . .) production

indicates a procedure call. Here, the call keyword is used to differentiate it from a primitive call

production. The => (e e* . . .) syntax that follows the production indicates a pretty form for the

production. The define-language form defines an unparser for each language, and the unparser

uses the pretty form when unparsing this production. This is useful to produce a language form

that can be evaluated in the host Scheme system. The rest of the productions are S-expression

productions with keywords that correspond to the Scheme syntax that they represent.

In addition to the star, *, suffix mentioned earlier in the primitive call and procedure call productions,

meta-variable references can also use a numeric suffix (as in the production for if), a question mark

(?), or a caret (^). The ? suffix is intended for use with maybe meta-variables, and the ^ is used

when expressing meta-variables with a more mathematical syntax than the numeric suffixes provide.

Suffixes can also be used in combination. References to meta-variables in a production must be

unique, and the suffixes allow the same root name to be used more than once.

Language definitions can also include more than one nonterminal, as the following language illus-

trates:

(define-language L3

(entry Expr)

(terminals

(constant (c))

(primitive (pr))

(uvar (x)))

(Expr (e body)

x

(quote c)

(if e0 e1 e2)
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(begin e* . . . e)

le

(let ([x* e*] . . .) abody)

(letrec ([x* le*] . . .) body)

(set! x e)

(pr e* . . .)
(call e e* . . .))

(AssignedBody (abody)

(assigned (x* . . .) body))

(LambdaExpr (le)

(lambda (x* . . .) abody)))

This language has three nonterminals, Expr, AssignedBody, and LambdaExpr. When more than

one nonterminal is specified, one must be selected as the entry point. In language L3, the Expr

nonterminal is selected as the entry nonterminal by the (entry Expr) clause. When the entry

clause is not specified, the first nonterminal listed is implicitly selected as the entry point.

The L3 language uses a single terminal meta-variable production, x, to indicate that a stand-alone

uvar is a valid Expr. In addition, the L3 language uses a single nonterminal meta-variable production,

le, to indicate that any LambdaExpr production is also a valid Expr. The LambdaExpr is separated

from Expr because the letrec production is now limited to binding uvars to LambdaExprs.

In addition to the nanopass framework providing a syntax for specifying list structures in a language

production, it is also possible to indicate that a field of a language production might not contain a

(useful) value. The following language has an example of this:

(define-language Lopt

(terminals

(uvar (x))

(label (l))

(constant (c))

(primitive (pr)))

(Expr (e body)

x

(quote c)

(begin e* . . . e)

(lambda (x* . . .) body)

(let ([x* e*] . . .) body)

(letrec ([x* le*] . . .) body)

(pr e* . . .)
(call (maybe l) (maybe e) e* . . .))

(LambdaExpr (le)

(lambda (x* . . .) body)))
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The (maybe l) field indicates that either a label, l, or #f will be provided. Here, #f is a stand-in

for bottom, indicating that the value is not specified. The (maybe e) field indicates that either an

Expr or #f will be provided.

Instead of using (maybe l) to indicate a label that might be provided, a maybe-label terminal

that serves the same purpose could be added. It is also possible to eliminate the (maybe e) form,

although it requires the creation of a separate nonterminal that has both an e production and a

production to represent ⊥, when no Expr is available.

2.3.2. Extending languages. The first “pass” of the class compiler is a simple expander that

produces Lsrc language forms from S-expressions. The next pass takes the Lsrc language and

expands complex quoted datum into code appropriate to construct these constants. The output

grammar of this pass changes just one production of the language, exchanging potentially complex

quoted datum with quoted constants and making explicit the code to build the constant pairs and

vectors when the program begins execution.

The compiler writer could specify the new language by rewriting the Lsrc language and replacing

the appropriate terminal forms. Rewriting each language in its full form, however, can result in

verbose source code, particularly in a compiler like the class compiler, which has nearly 30 different

intermediate languages. Instead, the nanopass framework supports a language extension form. The

output language can be specified as follows:

(define-language L1

(extends Lsrc)

(entry Expr)

(terminals

(- (datum (d)))

(+ (constant (c))))

(Expr (e body)

(- (quote d))

(+ (quote c))))

The L1 language removes the datum terminal and replaces it with the constant terminal. It also

replaces the (quote d) production with a (quote c) production to indicate that only constants

are allowed in the quote form.1 A language extension form is indicated by including the extends

clause, in this case (extends Lsrc), that indicates that this is an extension of the given base

language. In a language extension, the terminals form now contains subtraction clauses, in this

1If we failed to replace the (quote d) form, it would result in an error, since the d meta-variable is not bound in the

new language.

18



2. THE NANOPASS FRAMEWORK

case (- (datum (d))), and addition clauses, in this case (+ (constant (c))). These addition and

subtraction clauses can contain one or more terminal specifiers. The nonterminal syntax is similarly

modified, with the subtraction clause, in this case (- (quote d)), that indicates productions to be

removed and an addition clause that indicates productions to be added, in this case (+ (quote c)).

The list of meta-variables indicated for the nonterminal form is also updated to use the set in the

extension language. It is important to include not only the meta-variables named in the language

extension but also those for terminal and nonterminal forms that will be maintained from the base

language. Otherwise, these meta-variables will be unbound in the extension language, leading to

errors.

Nonterminals can be removed in an extended language by removing all of the productions of the

nonterminal. New nonterminals can be added in an extended language by adding the productions of

the new nonterminal. For instance, language L10 removes the Expr nonterminal and adds Effect,

Pred, and Value nonterminals.

(define-language L10

(extends L9)

(entry Program)

(terminals

(- (primitive (pr)))

(+ (value-primitive (val-pr))

(predicate-primitive (pred-pr))

(effect-primitive (ef-pr))))

(Program (prog)

(- (letrec ([l* le*] . . .) body))

(+ (letrec ([l* le*] . . .) vbody)))

(Expr (e body)

(- l

x

(quote c)

(if e0 e1 e2)

(begin e* . . . e)

(let ([x* e*] . . .) body)

(pr e* . . .)
(call e e* . . .)))

(Value (v vbody)

(+ l

x

(quote c)

(if p0 v1 v2)

(begin e* . . . v)

(let ([x* v*] . . .) vbody)

(val-pr v* . . .)
(call v v* . . .)))

(Effect (e ebody)

(+ (nop)
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(if p0 e1 e2)

(begin e* . . . e)

(let ([x* v*] . . .) ebody)

(ef-pr v* . . .)
(call v v* . . .)))

(Pred (p pbody)

(+ (true)

(false)

(if p0 p1 p2)

(begin e* . . . p)

(let ([x* v*] . . .) pbody)

(pred-pr v* . . .)))
(LambdaExpr (le)

(- (lambda (x* . . .) body))

(+ (lambda (x* . . .) vbody))))

The L10 language also removes the primitive terminal and replaces it with the value-primitive,

predicate-primitive, and effect-primitive terminals. These terminals are used for primitive

calls in each of the three contexts specified in the language.

2.3.2.1. The define-language form. The define-language syntax has two related forms. The

first form fully specifies a new language. The second form uses the extends clause to indicate that

the language is an extension of an existing base language.

Both forms of define-language start with the same basic syntax:

(define-language language-name clause . . .)

where clause is an extension clause, an entry clause, a terminals clause, or a nonterminal clause.

Extension clause. The extension clause indicates that the new language is an extension of an

existing language. This clause slightly changes the syntax of the define-language form and is

described in Section 2.3.2.

Entry clause. The entry clause specifies which nonterminal is the starting point for this language.

This information is used when generating passes to determine which nonterminal should be expected

first by the pass. This default can be overridden in a pass definition, as described in Section 2.3.3.1.

The entry clause has the following form:

(entry nonterminal-name)

where nonterminal-name corresponds to one of the nonterminals specified in this language. Only

one entry clause can be specified in a language definition.
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Terminals clause. The terminals clause specifies one or more terminals used by the language. For

instance, in the Lsrc example language, the terminals clause specifies three terminal types: uvar,

primitive, and datum. The terminals clause has the following form:

(terminals terminal-clause . . .)

where terminal-clause has one of the following forms:

(terminal-name (meta-var . . .))
(=> (terminal-name (meta-var . . .)) prettifier)
(terminal-name (meta-var . . .)) => prettifier

Here,

• terminal-name is the name of the terminal, and a corresponding terminal-name? predicate

function exists to determine whether a Scheme object is of this type when checking the output

of a pass,

• meta-var is the name of a meta-variable used for referring to this terminal type in language

and pass definitions, and

• prettifier is a procedure expression of one argument used when the language unparser is called

in “pretty” mode to produce a pretty, S-expression representation.

The final form is syntactic sugar for the form above it. When the prettifier is omitted, no processing

is done on the terminal when the unparser runs.

Nonterminal clause. A nonterminal clause specifies the valid productions in a language. Each

nonterminal clause has a name, a set of meta-variables, and a set of productions. A nonterminal

clause has the following form:

(nonterminal-name (meta-var . . .)
production-clause
. . .)

where nonterminal-name is an identifier that names the nonterminal, meta-var is the name of

a meta-variable used when referring to this nonterminal in language and pass definitions, and

production-clause has one of the following forms:

terminal-meta-var
nonterminal-meta-var
production-s-expression
(keyword . production-s-expression)
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Here,

• terminal-meta-var is a terminal meta-variable that is a stand-alone production for this nonter-

minal,

• nonterminal-meta-var is a nonterminal meta-variable that indicates that any form allowed by

the specified nonterminal is also allowed by this nonterminal,

• keyword is an identifier that must be matched exactly when parsing an S-expression represen-

tation, language input pattern, or language output template, and

• production-s-expression is an S-expression that represents a pattern for production and has the

following form:

meta-variable
(maybe meta-variable)
(production-s-expression ellipsis)
(production-s-expression ellipsis production-s-expression . . . . production-s-expression)
(production-s-expression . production-s-expression)
()

Here,

• meta-variable is any terminal or nonterminal meta-variable extended with an arbitrary number

of digits, followed by an arbitrary combination of *, ?, or ^ characters; for example, if the meta-

variable is e, then e1, e*, e?, and e4*? are all valid meta-variable expressions;

• (maybe meta-variable) indicates that an element in the production is either of the type of the

meta-variable or bottom (represented by #f); and

• ellipsis is the literal . . . and indicates that a list of the production-s-expression that proceeds

it is expected.

Thus, a Scheme language form such as let can be represented as a language production as:

(let ([x* e*] . . .) body* . . . body)

where let is the keyword , x* is a meta-variable that indicates a list of variables, e* and body* are

meta-variables that each indicate a list of expressions, and body is a meta-variable that indicates a

single expression.

Using the maybe form, something similar to the named-let form could be represented as follows:

(let (maybe x) ([x* e*] . . .) body* . . . body)

22



2. THE NANOPASS FRAMEWORK

although this would be slightly different from the normal named-let form, in that the non-named

form would then need an explicit #f to indicate that no name was specified.

2.3.2.2. Extensions with the define-language form. A language defined as an extension of

an existing language has a slightly modified syntax to indicate what should be added to or removed

from the base language to create the new language. A compiler writer indicates that a language is

an extension by using an extension clause.

Extension clause. The extension clause has the following form:

(extends language-name)

where language-name is the name of an already defined language. Only one extension clause can be

specified in a language definition.

Entry clause. The entry clause does not change syntactically in an extended language. It can,

however, name a nonterminal from the base language that is retained in the extended language.

Terminals clause. When a language derives from a base language, the terminals clause has the

following form:

(terminals extended-terminal-clause . . .)

where extended-terminal-clause has one of the following forms:

(+ terminal-clause . . .)
(- terminal-clause . . .)

where the terminal-clause uses the syntax for terminals specified in the non-extended version of the

terminals form. The + form indicates terminals that should be added to the new language. The -

form indicates terminals that should be removed from the list in the old language when producing

the new language. Terminals not mentioned in a terminals clause will be copied unchanged into

the new language. Note that adding and removing meta-vars from a terminal currently requires

removing the terminal type and re-adding it. This can be done in the same step with a terminals

clause, similar to the following:

(terminals

(- (variable (x)))

(+ (variable (x y))))
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Nonterminal clause. When a language extends from a base language, a nonterminal clause has

the following form:

(nonterminal-name (meta-var . . .)
extended-production-clause
. . .)

where extended-production-clause has one of the following forms:

(+ production-clause . . .)
(- production-clause . . .)

The + form indicates nonterminal productions that should be added to the nonterminal in the

new language. The - form indicates nonterminal productions that should not be copied from the

list of productions for this nonterminal in the base language when producing the new language.

Productions not mentioned in a nonterminal clause will be copied unchanged into the nonterminal

in the new language. If a nonterminal has all of its productions removed in a new language, the

nonterminal will be dropped in the new language. Conversely, new nonterminals can be added by

naming the new nonterminal and using the + form to specify the productions of the new nonterminal.

2.3.2.3. Products of define-language. The define-language form produces the following user-

visible bindings:

• a language definition, bound to the specified language-name;

• an unparser (named unparse-language-name) that can be used to unparse a record-based

representation back into an S-expression representation; and

• a set of predicates that can be used to identify a term of the language or a term from a specified

nonterminal in the language.

It also produces the following internal bindings:

• a meta-parser that can be used by the define-pass macro to parse the patterns and templates

used in passes and

• a set of record definitions that will be used to represent the language forms.

The Lsrc language, for example, will bind the identifier Lsrc to the language definition, produce an

unparser named unparse-Lsrc, and create two predicates, Lsrc? and Lsrc:Expr?. The language

definition is used when the language-name is specified as the base of a new language definition and

in the definition of a pass.
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The define-parser form can also be used to create a simple parser for parsing S-expressions into

language forms as follows:

(define-parser parser-name language-name)

The parser does not support backtracking; thus, grammars must be specified, either by specifying a

keyword or by having different length S-expressions so that the productions are unique.

For instance, the following language definition cannot be parsed because all four of the set! forms

have the same keyword and are S-expressions of the same length:

(define-language Lunparsable

(terminals

(variable (x))

(binop (binop))

(integer-32 (int32))

(integer-64 (int64)))

(Program (prog)

(begin stmt* . . . stmt))

(Statement (stmt)

(set! x0 int64)

(set! x0 x1)

(set! x0 (binop x1 int32))

(set! x0 (binop x1 x2))))

Instead, the Statement nonterminal must be broken into multiple nonterminals, as in the following

language:

(define-language Lparsable

(terminals

(variable (x))

(binop (binop))

(integer-32 (int32))

(integer-64 (int64)))

(Program (prog)

(begin stmt* . . . stmt))

(Statement (stmt)

(set! x rhs))

(Rhs (rhs)

x

int64

(binop x arg))

(Argument (arg)

x

int32))

2.3.3. Defining passes. Passes are used to specify transformations over languages defined by using

define-language. Before going into the formal details of defining passes, we need to take a look at a

25



2. THE NANOPASS FRAMEWORK

simple pass to convert an input program from the Lsrc intermediate language to the L1 intermediate

language. This pass removes the structured quoted datum by making the construction of the data

explicit. To avoid constructing these constants more than once at run time, the pass also needs to

lift the definitions of these datum to the outside of the program, binding them once and for all when

the program begins running.

We define a pass called convert-complex-datum to accomplish this task, without using any of the

catamorphism [68] or autogeneration features of the nanopass framework. Below, we can see how

this feature helps eliminate boilerplate code.

(define-pass convert-complex-datum : Lsrc (x) -> L1 ()

(definitions

(define const-x* '())
(define const-e* '())
(with-output-language (L1 Expr)

(define datum->expr

(lambda (d)

(cond

[(pair? d) `(cons ,(datum->expr (car d)) ,(datum->expr (cdr d)))]

[(vector? d)

(let ([n (vector-length d)])

(if (fxzero? n)

`(make-vector (quote 0))

(let ([t (unique-name 't)])
`(let ([,t (make-vector (quote ,n))])

(begin

,(do ([i (fx- n 1) (fx- i 1)]

[ls '()
(cons `(vector-set! ,t (quote ,i)

,(datum->expr (vector-ref d i)))

ls)])

((< i 0) ls)) . . .
,t)))))]

[else `(quote ,d)])))))

(Expr : Expr (ir) -> Expr ()

[,x x]

[(quote ,d)

(if (constant? d)

`(quote ,d)

(let ([t (unique-name 't)])
(set! const-x* (cons t const-x*))

(set! const-e* (cons (datum->expr d) const-e*))

t))]

[(if ,e0 ,e1 ,e2) `(if ,(Expr e0) ,(Expr e1) ,(Expr e2))]

[(begin ,e* . . . ,e) `(begin ,(map Expr e*) . . . ,(Expr e))]

[(lambda (,x* . . .) ,body) `(lambda (,x* . . .) ,(Expr body))]

[(let ([,x* ,e*] . . .) ,body)

`(let ([,x* ,(map Expr e*)] . . .) ,(Expr body))]

[(letrec ([,x* ,e*] . . .) ,body)

`(letrec ([,x* ,(map Expr e*)] . . .) ,(Expr body))]
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[(set! ,x ,e) `(set! ,x ,(Expr e))]

[(,pr ,e* . . .) `(,pr ,(map Expr e*) . . .)]
[(call ,e ,e* . . .) `(call ,(Expr e) ,(map Expr e*) . . .)])

(let ([x (Expr x)])

(if (null? const-x*)

x

`(let ([,const-x* ,const-e*] . . .) ,x))))

The pass definition starts with a name (in this case, convert-complex-datum) and a signature.

The signature starts with an input-language specifier (e.g. Lsrc), along with a list of formals. Here,

there is just one formal, x, for the input-language term. The second part of the signature has an

output-language specifier (in this case, L1), as well as a list of extra return values (in this case,

empty).

Following the name and signature, this pass specifies definitions for const-x*, const-e*, and

datum->expr in the definitions clause. The definitions clause can contain any Scheme ex-

pression valid in a definition context. The const-x* and const-e* variables are initialized to null

and updated to contain the new binding and an expression to build the structured quoted datum,

as each structured quoted datum is encountered. The datum->expr procedure recursively processes

a structured quoted datum and produces the L1 intermediate language code needed to construct

it, using cons for building pairs and make-vector and vector-set! to build and fill vectors. The

recursion in datum->expr terminates when a quoted constant is found. These definitions are scoped

at the same level as the transformers in the pass.

Next, a transformer from the input nonterminal Expr to the output nonterminal Expr is defined.

The transformer is named Expr and has a signature similar to that of the pass, with an input-

language nonterminal and list of formals followed by the output-language nonterminal and list of

extra-return-value expressions.

The transformer has a clause that processes each production of the Expr nonterminal. Each clause

consists of an input pattern, an optional guard clause, and one or more expressions that specify zero

or more return values based on the signature. The input pattern is derived from the S-expression

productions specified in the input language. Each variable in the pattern is denoted by unquote (,).

For instance, the clause for the set! production matches the pattern (set! ,x ,e), binds x to the

uvar specified by the set! and e to the Expr specified by the set!. The output-language expression

is constructed using a quasiquoted template, in this case `(set! ,x ,(Expr e)). Here, quasiquote,

(`), is rebound to a form that can construct language forms based on the template, and unquote
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(,), is used to escape back into Scheme. The ,(Expr e) thus puts the result of the recursive call of

Expr into the output-language (set! x e) form.

Following the Expr transformer is the body of the pass, which calls Expr to transform the Lsrc Expr

term into an L1 Expr term and wraps the result in a let expression if any structured quoted datum

are found in the program that is being compiled.

In place of the explicit recursive calls to Expr, the compiler writer can use the catamorphism syntax

to indicate the recurrence, as in the following version of the pass.

(define-pass convert-complex-datum : Lsrc (x) -> L1 ()

(definitions

(define const-x* '())
(define const-e* '())
(with-output-language (L1 Expr)

(define datum->expr

(lambda (d)

(cond

[(pair? d) `(cons ,(datum->expr (car d)) ,(datum->expr (cdr d)))]

[(vector? d)

(let ([n (vector-length d)])

(if (fxzero? n)

`(make-vector (quote 0))

(let ([t (unique-name 't)])
`(let ([,t (make-vector (quote ,n))])

(begin

,(map (lambda (i)

`(vector-set! ,t (quote ,i)

,(datum->expr (vector-ref d i))))

(iota n))

. . .
,t)))))]

[else `(quote ,d)])))))

(Expr : Expr (ir) -> Expr ()

[,x x]

[(quote ,d)

(if (constant? d)

`(quote ,d)

(let ([t (unique-name 't)])
(set! const-x* (cons t const-x*))

(set! const-e* (cons (datum->expr d) const-e*))

t))]

[(if ,[e0] ,[e1] ,[e2]) `(if ,e0 ,e1 ,e2)]

[(begin ,[e*] . . . ,[e]) `(begin ,e* . . . ,e)]

[(lambda (,x* . . .) ,[body]) `(lambda (,x* . . .) ,body)]

[(let ([,x* ,[e*]] . . .) ,[body]) `(let ([,x* ,e*] . . .) ,body)]

[(letrec ([,x* ,[e*]] . . .) ,[body]) `(letrec ([,x* ,e*] . . .) ,body)]

[(set! ,x ,[e]) `(set! ,x ,e)]

[(,pr ,[e*] . . .) `(,pr ,e* . . .)]
[(call ,[e] ,[e*] . . .) `(call ,e ,e* . . .)]
[else (errorf who "invalid Expr form ˜s" ir)])
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(let ([x (Expr x)])

(if (null? const-x*)

x

`(let ([,const-x* ,const-e*] . . .) ,x))))

Here, the square brackets that wrap the unquoted variable expression in a pattern indicate that a

catamorphism should be applied. For instance, in the set! clause, the ,e from the previous pass

becomes ,[e]. When the catamorphism is included on an element that is followed by an ellipsis,

map is used to process the elements of the list and to construct the output list.

Using catamorphisms helps to make the pass more succinct, but there is still boilerplate code

in the pass that the framework can fill in for the compiler writer. Several clauses simply match

the input-language production and generate a matching output-language production (modulo the

catamorphisms for nested Expr forms). Because the input and output languages are defined, the

define-pass macro can automatically generate these clauses. Thus, the same functionality can be

expressed as follows:

(define-pass convert-complex-datum : Lsrc (x) -> L1 ()

(definitions

(define const-x* '())
(define const-e* '())
(with-output-language (L1 Expr)

(define datum->expr

(lambda (d)

(cond

[(pair? d) `(cons ,(datum->expr (car d)) ,(datum->expr (cdr d)))]

[(vector? d)

(let ([n (vector-length d)])

(if (fxzero? n)

`(make-vector (quote 0))

(let ([t (unique-name 't)])
`(let ([,t (make-vector (quote ,n))])

(begin

,(do ([i (fx- n 1) (fx- i 1)]

[ls '()
(cons `(vector-set! ,t (quote ,i)

,(datum->expr (vector-ref d i)))

ls)])

((< i 0) ls)) . . .
,t)))))]

[else `(quote ,d)])))))

(Expr : Expr (ir) -> Expr ()

[(quote ,d)

(guard (not (constant? d)))

(let ([t (unique-name 't)])
(set! const-x* (cons t const-x*))

(set! const-e* (cons (datum->expr d) const-e*))

t)])
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(let ([x (Expr x)])

(if (null? const-x*)

x

`(let ([,const-x* ,const-e*] . . .) ,x))))

In this version of the pass, only the quote form where the datum is not already a constant is explicitly

processed. The define-pass form automatically generates the other clauses. Although all three

versions of this pass perform the same task, the final form is the closest to the initial intention of

changing just the complex quoted datum.

In addition to define-pass autogenerating the clauses of a transformer, define-pass can also

autogenerate the transformers for nonterminals that must be traversed but are otherwise unchanged

in a pass. For instance, one of the passes in the class compiler removes complex expressions from

the right-hand side of the set! form. At this point in the compiler, the language has several

nonterminals:

(define-language L14 (entry Program)

(terminals

(relative-operator (relop))

(binary-operator (binop))

(immediate (imm))

(label (l))

(uvar (x)))

(Pred (p pbody)

(true)

(false)

(relop t0 t1)

(if p0 p1 p2)

(begin e* . . . p))

(Effect (e ebody)

(nop)

(set! x v)

(mset! t0 t1 t2)

(call t t* . . .)
(if p0 e1 e2)

(begin e* . . . e))

(Value (v vbody)

t

(alloc t)

(mref t0 t1)

(binop t0 t1)

(call t t* . . .)
(if p0 v1 v2)

(begin e* . . . v))

(Program (prog)

(letrec ([l* le*] . . .) lbody))

(LambdaExpr (le)

(lambda (x* . . .) lbody))

(LocalsBody (lbody)
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(locals (x* . . .) vbody))

(Triv (t)

x

l

imm))

The pass, however, is only interested in the set! form and the Value form in the right-hand-side

position of the set! form. Relying on the autogeneration of transformers, this pass can be written

as:

(define-pass flatten-set! : L14 (x) -> L15 ()

(trivialize : Value (v x) -> Effect ()

[(if ,[p0] ,[e1] ,[e2]) `(if ,p0 ,e1 ,e2)]

[(begin ,[e*] . . . ,[e]) `(begin ,e* . . . ,e)]

[(,binop ,t0 ,t1) `(set! ,x (,binop ,t0 ,t1))]

[(call ,t ,t* . . .) `(set! ,x (call ,t ,t* . . .))]
[(mref ,t0 ,t1) `(set! ,x (mref ,t0 ,t1))]

[(alloc ,t) `(set! ,x (alloc ,t))]

[,t `(set! ,x ,t)]

[else (errorf who "unrecognized Value ˜s" v)])

(Effect : Effect (x) -> Effect ()

[(set! ,x ,v) (trivialize v x)]))

Here, the Effect transformer has just one clause for matching the set! form. The trivialize

transformer is called to produce the final Effect form. The trivialize transformer, in turn,

pushes the set! form into the if and begin forms and processes the contents of these forms, which

produces a final Effect form. The catamorphisms in the if and begin clauses automatically recur

to trivialize based on the type signature of Value -> Effect and pass along the set! form from

the left-hand side x. The define-pass macro autogenerates transformers for Program, LambdaExpr,

LocalsBody, Triv, Value, and Pred that recur through the input-language forms and produce the

output-language forms.

It is sometimes necessary to pass more information than just the language term to a transformer.

The transformer syntax allows extra formals to be named to support passing this information. For

example, in the pass from the class compiler that converts the closures form into explicit calls to

procedure primitives, the closure pointer, cp, and the list of free variables, free*, are passed to the

ClosureBody, uvar, and Expr transformers.

(define-pass introduce-procedure-primitives : L7 (x) -> L8 ()

(definitions

(define index-of

(lambda (x ls)

(let f ([ls ls] [i 0])

(and (not (null? ls))
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(if (eq? x (car ls))

i

(f (cdr ls) (+ i 1))))))))

(ClosureBody : ClosureBody (x cp free*) -> Expr ()

[(closures ([,x* ,l* ,[e**] . . .] . . .) ,[body])

(let ([len* (map length e**)])

`(let ([,x* (make-procedure ,l* (quote ,len*))] . . .)
(begin

,(fold-left

(lambda (ls lhs* i* free*)

(fold-left

(lambda (ls lhs i free)

(cons `(procedure-set! ,lhs (quote ,i) ,free) ls))

ls lhs* i* free*))

'() (map make-list len* x*) (map iota len*) e**)

. . .
,body)))])

(uvar : uvar (uvar cp free*) -> Expr ()

(cond

[(index-of uvar free*) => (lambda (i) `(procedure-ref ,cp (quote ,i)))]

[else uvar]))

(Expr : Expr (x cp free*) -> Expr ()

[(call ,l ,[e*] . . .) `(call ,l ,e* . . .)]
[(call ,[e] ,[e*] . . .) `(call (procedure-code ,e) ,e* . . .)])

(LambdaExpr : LambdaExpr (x) -> LambdaExpr ()

[(lambda (,x* . . .) (bind-free (,x ,x1* . . .) ,[body x x1* -> body]))

`(lambda (,x* . . .) ,body)])

(Expr x #f '()))

The catamorphism and clause autogeneration facilities are also aware of the extra formals expected

by transformers. In a catamorphism, this means that extra arguments need not be specified in the

catamorphism, if the formals are available in the transformer. For instance, in both the ClosureBody

and Expr transformers, the catamorphism specifies only the binding of the output Expr form, and

define-pass matches the name of the formal to the transformer with the expected argument. In

the LambdaExpr transformer, the extra arguments need to be specified, both because they are not

available as a formal of the transformer and because the values change at the LambdaExpr boundary.

Autogenerated clauses in Expr also call the uvar and Expr transformers with the extra arguments

from the formals.

In some cases, it is useful to specify a default value for an extra argument. For example, in the

convert-assignments pass, the set* argument can be defaulted to null, as the list of assigned

variables is built up as let and lambda forms are encountered that have assigned variables.

(define-pass convert-assignments : L3 (x) -> L4 ()

(definitions

(define replace

(lambda (set* t*)

32



2. THE NANOPASS FRAMEWORK

(lambda (x)

(let f ([set* set*] [t* t*])

(if (null? set*)

x

(if (eq? (car set*) x)

(car t*)

(f (cdr set*) (cdr t*)))))))))

(Expr : Expr (x [set* '()]) -> Expr ()

[,x (if (memq x set*) `(car ,x) x)]

[(set! ,x ,[e]) `(set-car! ,x ,e)]

[(let ([,x* ,[e*]] . . .) (assigned () ,[body]))

`(let ([,x* ,e*] . . .) ,body)]

[(let ([,x* ,[e*]] . . .) (assigned (,x1* . . .) ,body))

(let ([t* (map unique-name x1*)])

(let ([x* (map (replace x1* t*) x*)])

`(let ([,x* ,e*] . . .)
(let ([,x1* ,(map (lambda (t) `(cons ,t (void))) t*)] . . .)
,(Expr body (append x1* set*))))))])

(LambdaExpr : LambdaExpr (x [set* '()]) -> LambdaExpr ()

[(lambda (,x* . . .) (assigned () ,[body])) `(lambda (,x* . . .) ,body)]

[(lambda (,x* . . .) (assigned (,x1* . . .) ,body))

(let ([t* (map unique-name x1*)])

(let ([x* (map (replace x1* t*) x*)])

`(lambda (,x* . . .)
(let ([,x1* ,(map (lambda (t) `(cons ,t (void))) t*)] . . .)
,(Expr body (append x1* set*))))))]))

The catamorphisms and recursion on sub-nonterminals in the autogenerated clauses for the Expr and

LambdaExpr transformers will pass along the current value of set*, as the set* formal is available

in these transformers. The lambda and let clauses that contain a non-empty assigned variable list

add their assigned variables to the set* list. When define-pass autogenerates the body for the

convert-assignments pass, it will use the default value for set* from the Expr transformer in the

initial call to the Expr transformer.

Transformers can also be written that handle terminals instead of nonterminals. Because terminals

have no structure, the body of such transformers is simply a Scheme expression. For example, in

the pass that replaces variables with their locations after register assignment, the uvar terminal is

replaced by the location.

(define-pass finalize-locations : L23 (x) -> L24 ()

(uvar-reg-fv : uvar-reg-fv (x env) -> location ()

(cond [(and (uvar? x) (assq x env)) => cdr] [else x]))

(Triv : Triv (x env) -> Triv ())

(Rhs : Rhs (x env) -> Rhs ())

(Pred : Pred (x env) -> Pred ())

(Effect : Effect (x env) -> Effect ())

(Value : Value (x env) -> Value ())
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(LocalsBody : LocalsBody (x) -> Value ()

[(finished ([,x* ,loc*] . . .) ,vbody) (Value vbody (map cons x* loc*))]))

The two interesting parts of this pass are the LocalsBody transformer that creates the environment

that maps variables to locations and the uvar-reg-fv transformer that replaces variables with the

appropriate location. In this pass, transformers cannot be autogenerated because extra arguments

are needed, and the nanopass framework only autogenerates transformers without extra arguments

or return values. The autogeneration is limited to help reign in some of the unpredictable behavior

that can result from autogenerated transformers.

Passes can also be written that do not take a language form but that produce a language form.

The initial parser for the class compiler is a good example of this. It expects an S-expression that

conforms to an input grammar for the subset of Scheme used by the class compiler.

(define-pass parse-scheme : * (x) -> Lsrc ()

(definitions )

(Expr : * (x env) -> Expr ()

(cond

[(constant? x) `(quote ,x)]

[(symbol? x)

(let ([uv (lookup x env)])

(if (uvar? uv) uv (uv env x)))]

[(and (pair? x) (let ([id (car x)]) (and (symbol? id) id))) =>

(lambda (id)

(let ([uv (lookup id env)])

(if (uvar? uv) (Application env id (cdr x)) (uv env (cdr x)))))]

[(pair? x)

(let ([id (car x)])

(cond

[(and (symbol? id) (let ([uv (lookup id env)]) (and (procedure? uv)) uv)) =>

(lambda (uv) (uv env (cdr x)))]

[else (Application env id (cdr x))]))]

[else (errorf who "invalid Expr ˜s" x)]))

(Application : * (env fun arg*) -> Expr ()

(cond

[(list? arg*) `(call ,(Expr fun env) ,(Expr* arg* env) . . .)]
[else (errorf who "invalid Expr ˜s" (cons fun arg*))]))

(let ()

(define build-begin

(lambda (env e*)

(let loop ([e (car e*)] [e* (cdr e*)] [re* '()])
(if (null? e*)

(let ([e (Expr e env)])

(if (null? re*) e `(begin ,(reverse re*) . . . ,e)))

(loop (car e*) (cdr e*) (cons (Expr e env) re*))))))

(define (do-primitive prim n)

(lambda (env arg*)

(unless (= (length arg*) n) (errorf who "invalid Expr ˜s" (cons prim arg*)))

`(,prim ,(Expr* arg* env) . . .)))
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(define initial-environment empty-env)

(define (add-initial-binding! id action)

(set! initial-environment (extend initial-environment id action)))

(define-syntax add-prim-binding!

(syntax-rules ()

[( prim)

(add-initial-binding! 'prim (do-primitive 'prim (primitive->arity 'prim)))]))
(define-syntax add-prim-binding*!

(syntax-rules ()

[( prim0 prim1 . . .)
(begin (add-prim-binding! prim0) (add-prim-binding! prim1) . . .)]))

; keywords in the language

(add-initial-binding! 'quote
(lambda (env e*)

(unless (and (list? e*) (fx= (length e*) 1))

(errorf who "invalid Expr ˜s" (cons 'quote e*)))

(let ([d (car e*)])

(unless (datum? d) (errorf who "invalid datum ˜s" d))

`(quote ,d))))

; macro style primitives

(add-initial-binding! 'and
(lambda (env e*)

(unless (list? e*) (errorf who "invalid Expr ˜s" (cons 'and e*)))

(if (null? e*)

`(quote #t)

(let f ([e* (Expr* e* env)])

(let ([e (car e*)] [e* (cdr e*)])

(if (null? e*)

e

`(if ,e ,(f e*) (quote #f))))))))

(add-prim-binding*! procedure? + - * car cdr cons make-vector vector-length

vector-ref void < <= = >= > boolean? eq? fixnum? null? pair? vector?

set-car! set-cdr! vector-set!)

(Expr x initial-environment)))

The parse-scheme pass is structured similarly to a simple expander with keywords, macros,2 and

primitives. It also performs syntax checking to ensure that the input grammar conforms to the

expected input grammar. Finally, it produces an Lsrc language term that represents the Scheme

program to be compiled.

In the pass syntax, the * in place of the input-language name indicates that no input-language term

should be expected. The Expr and Application transformers do not have pattern matching clauses,

as the input could be of any form. The quasiquote is, however, rebound because an output language

is specified.

2In this case, just the fixed and macro and or macro are defined.
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It can also be useful to create passes without an output language. The final pass of the class compiler

is the code generator that emits x86 64 assembler code.

(define-pass generate-x86 64 : L28 (x) -> * ()

(definitions

(define prim->opcode

(lambda (prim)

(cdr (assq prim

'((+ . addq) (- . subq) (* . imulq)

(logand . andq) (logor . orq) (sra . sarq))))))

(define relop->opcode

(lambda (relop not?)

(cdr (assq relop

(if not?

'((= . jne) (< . jge) (<= . jg) (> . jle) (>= . jl))

'((= . je) (< . jl) (<= . jle) (> . jg) (>= . jge))))))))

(Code : Code (x) -> * ()

[(label ,l) (emit-label l)]

[(jump ,t) (emit-jump 'jmp t)]

[(set! ,x ,l) (emit 'leaq l x)]

[(set! ,x0 (,binop ,x1 ,t2))

(emit (prim->opcode binop) t2 x1)]

[(set! ,x0 ,t1) (emit 'movq t1 x0)]

[(set! ,x0 ,rhs) (errorf who "unrecognized set! expression ˜s" x)]

[(if (not (,relop ,t0 ,t1)) (,l))

(emit 'cmpq t1 t0)

(emit-jump (relop->opcode relop #t) l)]

[(if (,relop ,t0 ,t1) (,l))

(emit 'cmpq t1 t0)

(emit-jump (relop->opcode relop #f) l)]

[(if ,p0 (,l))

(errorf who "unrecognized if expression ˜s" x)])

(Program : Program (x) -> * ()

[(code ,c* . . .) (emit-program (for-each Code c*))]))

Again, a * is used to indicate that there is no language form in this case for the output language.

The assembly code is printed to the standard output port. Thus, there is no need for any return

value from this pass.

Passes can also return a value that is not a language form. For instance, the everybody-home?

predicate used to determine when register allocation is complete can be written as a pass that

returns a boolean value.

(define-pass everybody-home? : L22 (x) -> * (bool)

(home? : LocalsBody (x) -> * (bool)

[(locals (,x* . . .) ,ulbody) #f]

[(finished ([,x* ,loc*] . . .) ,vbody) #t])

(Program : Program (x) -> * (bool)

[(letrec ([,l* (lambda () ,lbody*)] . . .) ,lbody)
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(andmap home? (cons lbody lbody*))]

[(letrec ([,l* ,le*] . . .) ,lbody)

(errorf who "program with unexpected shape ˜s" x)])

(Program x))

Here, the extra return value is indicated as bool. The bool here is used to indicate to define-pass

that an extra value is being returned. Any expression can be used in this position. In this case, the

bool identifier will simply be an unbound variable if it is ever manifested. It is not manifested in

this case, however, because the body is explicitly specified; thus, no code will be autogenerated for

the body of the pass.

2.3.3.1. The define-pass syntactic form. The define-pass form has the following syntax.

(define-pass name : lang-specifier (fml . . .) -> lang-specifier (extra-return-val-expr . . .)
definitions-clause
transformer-clause . . .
body-expr . . .)

where name is an identifier to use as the name for the procedure definition. The lang-specifier has

one of the following forms:

*

lang-name
(lang-name nonterminal-name)

where

• lang-name refers to a language defined with the define-language form, and

• nonterminal-name refers to a nonterminal named within the language definition.

When the * form is used as the input lang-specifier , it indicates that the pass does not expect an

input-language term. When there is no input language, the transformers within the pass do not

have clauses with pattern matches because, without an input language, the define-pass macro

does not know what the structure of the input term will be. When the * form is used as the output

lang-specifier , it indicates that the pass does not produce an output-language term and should

not be checked. When there is no output language, the transformers within the pass do not bind

quasiquote, and there are no templates on the right-hand side of the transformer matches. It is

possible to use the * specifier for both the input and output lang-specifier . This effectively turns

the pass, and the transformers contained within it, into an ordinary Scheme function.
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When the lang-name form is used as the input lang-specifier , it indicates that the pass expects an

input-language term that is one of the productions from the entry nonterminal. When the lang-name

form is used as the output lang-specifier , it indicates that the pass expects that an output-language

term will be produced and checked to be one of the records that represents a production of the entry

nonterminal.

When the (lang-name nonterminal-name) form is used as the input-language specifier, it indicates

that the input-language term will be a production from the specified nonterminal in the specified

input language. When the (lang-name nonterminal-name) form is used as the output-language

specifier, it indicates that the pass will produce an output production from the specified nonterminal

of the specified output language.

The fml is a Scheme identifier, and if the input lang-specifier is not *, the first fml refers to the

input-language term.

The extra-return-val-expr is any valid Scheme expression that is valid in value context. These

expressions are scoped within the binding of the identifiers named as fmls.

The optional definitions-clause has the following form:

(definitions scheme-definition . . .)

where scheme-definition is any Scheme expression that can be used in definition context. Defini-

tions in the definitions-clause are in the same lexical scope as the transformers, which means that

procedures and macros defined in the definitions-clause can refer to any transformer named in a

transformer-clause.

The definitions-clause is followed by zero or more transformer-clausess of the following form:

(name : nt-specifier (fml-expr . . .) -> nt-specifier (extra-return-val-expr . . .)
definitions-clause?
transformer-body)

where name is a Scheme identifier that can be used to refer to the transformer within the pass. The

input nt-specifier is one of the following two forms:

*

nonterminal-name

When the * form is used as the input nonterminal, it indicates that no input nonterminal form

is expected and that the body of the transformer-body will not contain pattern matching clauses.
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When the * form is used as the output nonterminal, quasiquote will not be rebound, and no

output-language templates are available. When both the input and output nt-specifier are *, the

transformer is effectively an ordinary Scheme procedure.

The fml-expr has one of the following two forms:

fml
[fml default-val-expr]

where fml is a Scheme identifier and default-val-expr is a Scheme expression. The default-val-expr is

used when an argument is not specified in a catamorphism or when a matching fml is not available

in the calling transformer. All arguments must be explicitly provided when the transformer is called

as an ordinary Scheme procedure. Using the catamorphism syntax, the arguments can be explicitly

supplied, using the syntax discussed on page 40. It can also be specified implicitly. Arguments are

filled in implicitly in catamorphisms that do not explicitly provide the arguments and in autogener-

ated clauses when the nonterminal elements of a production are processed. These implicitly supplied

formals are handled by looking for a formal in the calling transformer that has the same name as

the formal expected by the target transformer. If no matching formal is found, and the target

transformer specifies a default value, the default value will be used in the call; otherwise, another

target transformer must be found, a new transformer must be autogenerated, or an exception must

be raised to indicate that no transformer was found and none can be autogenerated.

The extra-return-val-expr can be any Scheme expression. These expressions are scoped within the

fmls bound by the transformer. This allows an input formal to be returned as an extra return

value, implicitly in the autogenerated clauses. This can be useful for threading values through a

transformer.

The optional definitions-clause can include any Scheme expression that can be placed in a definition

context. These definitions are scoped within the transformer. When an output nonterminal is

specified, the quasiquote is also bound within the body of the definitions clause to allow language

term templates to be included in the body of the definitions.

When the input nt-specifier is not *, the transformer-body has one of the following forms:

[pattern guard-clause body* . . . body]
[pattern body* . . . body]
[else body* . . . body]
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where the else clause must be the last one listed in a transformer and prevents autogeneration of

missing clauses (because the else clause is used in place of the autogenerated clauses). The pattern

is an S-expression pattern, based on the S-expression productions used in the language definition.

Patterns can be arbitrarily nested. Variables bound by the pattern are preceded by an unquote and

are named based on the meta-variables named in the language definition. The variable name can be

used to restrict the pattern by using a meta-variable that is more specific than the one specified in

the language definition. The pattern can also contain catamorphisms that have one of the following

forms:

[Proc-expr : input-fml arg . . . -> output-fml extra-rv-fml . . .]
[Transformer-name : output-fml extra-rv-fml . . .]
[input-fml arg . . . -> output-fml extra-rv-fml . . .]
[output-fml extra-rv-fml . . .]

In the first form, the Proc-expr is an explicitly specified procedure expression (which may be a

Transformer-name), the input-fml and all arguments to the procedure are explicitly specified, and

the results of calling the Proc-expr are bound by the output-fml and extra-rv-fmls. In the sec-

ond form, the Transformer-name is an identifier that refers to a transformer named in this pass.

The define-pass macro determines, based on the signature of the transformer referred to by the

Transformer-name, what arguments should be supplied to the transformer. In the last two forms,

the transformer is determined automatically. In the third form, the nonterminal type associated with

the input-fml , the args, the output nonterminal type based on the output-fml , and the extra-rv-fmls

are used to determine the transformer to call. In the final form, the nonterminal type for the field

within the production, along with the formals to the calling transformer, the output nonterminal

type based on the output-fml , and the extra-rv-fmls are used to determine the transformer to call.

In the two forms where the transformer is not explicitly named, a new transformer can be autogen-

erated when no args and no extra-rv-fmls are specified. This limitation is in place to avoid creating

a transformer with extra formals whose use is unspecified and extra return values with potentially

dubious return-value expressions.

The input-fml is a Scheme identifier with a name based on the meta-variables named in the input-

language definition. The specification of a more restrictive meta-variable name can be used to further

restrict the pattern. The output-fml is a Scheme identifier with a name based on the meta-variables

named in the output-language definition. The extra-rv-fml is a Scheme identifier. The input-fmls

named in the fields of a pattern must be unique. The output-fmls and extra-rv-fmls must also
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be unique, although they can overlap with the input-fmls that are shadowed in the body by the

output-fml or extra-rv-fml with the same name.

Only the input-fmls are visible within the optional guard-clause. This is because the guard-clause

is evaluated before the catamorphisms recur on the fields of a production. The guard-clause has the

following form:

(guard guard-expr . . .)

where guard-expr is a Scheme expression. The guard-clause has the same semantics as and.

The body* and body are any Scheme expression. When the output nt-specifier is not *, quasiquote

is rebound to a macro that interprets quasiquote expressions as templates for productions in the

output nonterminal. Additionally, in-context is a macro that can be used to rebind quasiquote to

a different nonterminal. Templates are specified as S-expressions based on the productions specified

by the output language. In templates, unquote is used to indicate that the expression in the unquote

should be used to fill in the given field of the production. Within an unquote expression, quasiquote

is rebound to the appropriate nonterminal based on the expected type of the field in the production.

If the template includes items that are not unquoted where a field value is expected, the expression

found there is automatically quoted. This allows self-evaluating items such as symbols, booleans,

and numbers to be more easily specified in templates. A list of items can be specified in a field that

expects a list, using an ellipsis.

Although the syntax of a language production is specified as an S-expression, the record representa-

tion used for the language term separates each variable specified into a separate field. This means

that the template syntax expects a separate value or list of values for each field in the record. For

instance, in the (letrec ([x* e*] . . .) body) production, it is not possible to have a template of

the form (letrec (,bindings . . .) ,body) because the nanopass framework will not attempt to

break up the bindings list into its x* and e* component parts. The same can be accomplished by the

template (letrec ([,(map car bindings) ,(map cadr bindings)] . . .) ,body). It is possible

that the nanopass framework could be extended to perform the task of splitting up the binding*

list automatically, but it is not done currently, partially to avoid hiding the cost of deconstructing

the binding* list and constructing the x* and e* lists.

The in-context expression within the body has the following form:

(in-context nonterminal-name body* . . . body)
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The in-context form rebinds the quasiquote to allow productions from the named nonterminal

to be constructed in a context where they are not otherwise expected.

2.3.4. Constructing language forms outside of a pass. In addition to creating language forms

using a parser defined with define-parser or through a pass defined with define-pass, language

forms can also be created using the with-output-language form. The with-output-language form

binds the in-context transformer for the language specified and, if a nonterminal is also specified,

binds the quasiquote form. This allows the same template syntax used in the body of a transformer

to be used outside of the context of a pass. In a commercial compiler, such as Chez Scheme, it is

often convenient to use functional abstraction to centralize the creation of a language term.

For instance, in the convert-complex-datum pass discussed in Section 2.3.3, the datum->expr

procedure has a with-output-language wrapped around the body of the function. This is done so

that primitive calls to cons, make-vector, and vector-set! can be constructed, along with quoted

constants, let, and begin forms. Looking more closely at the datum->expr procedure, we can see

that the with-output-language syntax specifies a language and a nonterminal to be used.

(define datum->expr

(with-output-language (L1 Expr)

(lambda (d)

(cond

[(pair? d) `(cons ,(datum->expr (car d)) ,(datum->expr (cdr d)))]

[(vector? d)

(let ([n (vector-length d)])

(if (fxzero? n)

`(make-vector (quote 0))

(let ([t (unique-name 't)])
`(let ([,t (make-vector (quote ,n))])

(begin

,(do ([i (fx- n 1) (fx- i 1)]

[ls '()
(cons `(vector-set! ,t (quote ,i)

,(datum->expr (vector-ref d i)))

ls)])

((< i 0) ls)) . . .
,t)))))]

[else `(quote ,d)]))))

This rebinds both the quasiquote keyword and the in-context keyword.

The with-output-language form has one of the following forms:

(with-output-language lang-name expr* . . . expr)
(with-output-language (lang-name nonterminal-name) expr* . . . expr)
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In the first form, the in-context form is bound and can be used to specify a nonterminal-name,

as described at the end of Section 2.3.3. In the second form, both in-context and quasiquote

are bound. The quasiquote form is bound in the context of the specified nonterminal-name, and

templates can be defined just as they are on the right-hand side of a transformer clause.

The with-output-language form is a splicing form, similar to begin or let-syntax, allowing mul-

tiple definitions or expressions that are all at the same scoping level as the with-output-language

form to be contained within the form. This is convenient when writing a set of definitions that all

construct some piece of a language term from the same nonterminal. This flexibility means that the

with-output-language form cannot be defined as syntactic sugar for the define-pass form.

2.3.5. Matching language forms outside of a pass. In addition to the define-pass form, it is

possible to match a language term using the nanopass-case form. This can be useful when creating

functional abstractions, such as predicates that ask a question based on matching a language form.

For instance, suppose we write a constant-form? predicate for the L0 language as follows:

(define constant-form?

(lambda (x)

(nanopass-case (L0 Expr) x

[,c #t]

[(quote ,d) #t]

[else #f])))

The nanopass-case form has the following syntax:

(nanopass-case (lang-name nonterminal-name) expr
matching-clause . . .)

where matching-clause has one of the following forms:

[pattern guard-clause expr* . . . expr]
[pattern expr* . . . expr]
[else expr* . . . expr]

where the pattern and guard-clause forms have the same syntax as in the transformer-body of a pass.

Similar to with-output-language, nanopass-case provides a more succinct syntax for matching a

language form than does the general define-pass form. Unlike the with-output-language form,

however, the nanopass-case form can be implemented in terms of the define-pass form. For

example, the constant-form? predicate also could have been written as:
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(define-pass constant-form? : (L0 Expr) (ir) -> * (bool)

(Expr : Expr (ir) -> * (bool)

[,c #t]

[(quote ,d) #t]

[else #f])

(Expr ir))

This is, in fact, how the nanopass-case macro is implemented.

2.3.6. Working with languages.

2.3.6.1. Displaying languages. The full definition of a language can be printed by supplying

the language name to the language->s-expression form. This can be helpful when working with

extended languages, such as in the case of L1:

(language->s-expression L1)

which returns:

(define-language L1

(entry Expr)

(terminals

(constant (c))

(primitive (pr))

(uvar (x)))

(Expr (e body)

(quote c)

x

(if e0 e1 e2)

(begin e* . . . e)

(lambda (x* . . .) body)

(let ([x* e*] . . .) body)

(letrec ([x* e*] . . .) body)

(set! x e)

(pr e* . . .)
(call e e* . . .)))

2.3.6.2. Differencing languages. The extension form can also be derived between any two lan-

guages by using the diff-languages form. For instance, we can get the differences between the

Lsrc and L1 language (giving us back the extension) with:

(diff-languages Lsrc L1)

which returns:
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(define-language L1

(extends Lsrc)

(entry Expr)

(terminals

(- (datum (d)))

(+ (constant (c))))

(Expr (body e)

(- (quote d))

(+ (quote c))))

2.3.6.3. Viewing the expansion of passes and transformers. The define-pass form auto-

generates both transformers and clauses within transformers. In simple passes, these are generally

straightforward to reason about, but in more complex passes, particularly those that make use of

different arguments for different transformers or include extra return values, it can become more

difficult to determine what code will be generated. In particular, the experience of developing a

full commercial compiler has shown that the define-pass form can autogenerate transformers that

shadow those defined by the compiler writer. To help the compiler writer determine what code is

being generated, there is a variation of the define-pass form, called echo-define-pass, that will

echo the expansion of define-pass.

For instance, we can echo the convert-complex-datum pass to get the following:

(echo-define-pass convert-complex-datum : Lsrc (x) -> L1 ()

(definitions

(define const-x* '())
(define const-e* '())
(define datum->expr

(with-output-language (L1 Expr)

)))

(Expr : Expr (ir) -> Expr ()

[(quote ,d)

(guard (not (constant? d)))

(let ([t (unique-name 't)])
(set! const-x* (cons t const-x*))

(set! const-e* (cons (datum->expr d) const-e*))

t)])

(let ([x (Expr x)])

(if (null? const-x*)

x

`(let ([,const-x* ,const-e*] . . .) ,x))))

⇒

(define convert-complex-datum

(lambda (x)

(define who 'convert-complex-datum)
(define-nanopass-record)

(define const-x* '())
(define const-e* '())
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(define datum->expr

(with-output-language (L1 Expr)

))

(define Expr

(lambda (ir)

(let ([g0.14 ir])

(let-syntax ([quasiquote '#<procedure>]
[in-context '#<procedure>])

(begin

(let ([rhs.15 (lambda (d)

(let ([t (unique-name 't)])
(set! const-x* (cons t const-x*))

(set! const-e*

(cons (datum->expr d) const-e*))

t))])

(cond

[(uvar? g0.14) g0.14]
[else

(let ([tag (nanopass-record-tag g0.14)])
(cond

[(eqv? tag 1)

(let* ([d (Lsrc:quote:Expr.2-d g0.14)])
(if (and (not (constant? d)))

(let-values () (rhs.15 d))

(make-L1:quote:Expr.12
(Lsrc:quote:Expr.2-d g0.14))))]

[(eqv? tag 2)

(make-L1:if:Expr.13
(Expr (Lsrc:if:Expr.3-e0 g0.14))
(Expr (Lsrc:if:Expr.3-e1 g0.14))
(Expr (Lsrc:if:Expr.3-e2 g0.14)))]

[(eqv? tag 3)

(make-L1:begin:Expr.14
(map (lambda (m) (Expr m))

(Lsrc:begin:Expr.4-e* g0.14))
(Expr (Lsrc:begin:Expr.4-e g0.14)))]

[(eqv? tag 4)

(make-L1:lambda:Expr.15
(Lsrc:lambda:Expr.5-x* g0.14)
(Expr (Lsrc:lambda:Expr.5-body g0.14)))]

[(eqv? tag 5)

(make-L1:let:Expr.16
(Lsrc:let:Expr.6-x* g0.14)
(map (lambda (m) (Expr m))

(Lsrc:let:Expr.6-e* g0.14))
(Expr (Lsrc:let:Expr.6-body g0.14)))]

[(eqv? tag 6)

(make-L1:letrec:Expr.17
(Lsrc:letrec:Expr.7-x* g0.14)
(map (lambda (m) (Expr m))

(Lsrc:letrec:Expr.7-e* g0.14))
(Expr (Lsrc:letrec:Expr.7-body g0.14)))]

[(eqv? tag 7)

(make-L1:set!:Expr.18
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(Lsrc:set!:Expr.8-x g0.14)
(Expr (Lsrc:set!:Expr.8-e g0.14)))]

[(eqv? tag 8)

(make-L1:pr:Expr.19
(Lsrc:pr:Expr.9-pr g0.14)
(map (lambda (m) (Expr m))

(Lsrc:pr:Expr.9-e* g0.14)))]
[(eqv? tag 9)

(make-L1:call:Expr.20
(Expr (Lsrc:call:Expr.10-e g0.14))
(map (lambda (m) (Expr m))

(Lsrc:call:Expr.10-e* g0.14)))]
[else

(error 'convert-complex-datum
"unexpected Expr"

g0.14)]))])))))))
(let ([x (let-syntax ([quasiquote '#<procedure>]

[in-context '#<procedure>])
(begin

(let ([x (Expr x)])

(if (null? const-x*)

x

`(let ([,const-x* ,const-e*] . . .) ,x)))))])

(unless ((lambda (x) (or (L1:Expr.11? x) (uvar? x))) x)

(error 'convert-complex-datum
(format "expected ˜s but got ˜s" 'Expr x)))

x)))

This exposes the code generated by define-pass but does not expand the language form construc-

tion templates. The autogenerated clauses, such as the one that handles set!, have a form like the

following:

[(eqv? tag 7)

(make-L1:set!:Expr.18
(Lsrc:set!:Expr.8-x g0.14)
(Expr (Lsrc:set!:Expr.8-e g0.14)))]

Here, the tag of the record is checked and a new output-language record constructed, after recurring

to the Expr transformer on the e field.

The body code also changes slightly, so that the output of the pass can be checked to make sure

that it is a valid L1 Expr.

In addition to echoing the output of the entire pass, it is also possible to echo just the expansion of

a single transformer by prefixing the transformer with the echo keyword.

(define-pass convert-complex-datum : Lsrc (x) -> L1 ()

(definitions

(define const-x* '())
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(define const-e* '())
(define datum->expr

(with-output-language (L1 Expr)

)))

(echo Expr : Expr (ir) -> Expr ()

[(quote ,d)

(guard (not (constant? d)))

(let ([t (unique-name 't)])
(set! const-x* (cons t const-x*))

(set! const-e* (cons (datum->expr d) const-e*))

t)])

(let ([x (Expr x)])

(if (null? const-x*)

x

`(let ([,const-x* ,const-e*] . . .) ,x))))

⇒

Expr in pass convert-complex-datum expanded into:

(define Expr

(lambda (ir)

(let ([g141.165 ir])

(let-syntax ([quasiquote '#<procedure>]
[in-context '#<procedure>])

(begin

(let ([rhs.166 (lambda (d)

(let ([t (unique-name 't)])
(set! const-x* (cons t const-x*))

(set! const-e*

(cons (datum->expr d) const-e*))

t))])

(cond

[(uvar? g141.165) g141.165]
[else

(let ([tag (nanopass-record-tag g141.165)])
(cond

[(eqv? tag 1)

(let* ([d (Lsrc:quote:Expr.2-d g141.165)])
(if (and (not (constant? d)))

(let-values () (rhs.166 d))

(make-L1:quote:Expr.12
(Lsrc:quote:Expr.2-d g141.165))))]

[(eqv? tag 2)

(make-L1:if:Expr.13
(Expr (Lsrc:if:Expr.3-e0 g141.165))
(Expr (Lsrc:if:Expr.3-e1 g141.165))
(Expr (Lsrc:if:Expr.3-e2 g141.165)))]

[(eqv? tag 3)

(make-L1:begin:Expr.14
(map (lambda (m) (Expr m))

(Lsrc:begin:Expr.4-e* g141.165))
(Expr (Lsrc:begin:Expr.4-e g141.165)))]

[(eqv? tag 4)

(make-L1:lambda:Expr.15
(Lsrc:lambda:Expr.5-x* g141.165)
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(Expr (Lsrc:lambda:Expr.5-body g141.165)))]
[(eqv? tag 5)

(make-L1:let:Expr.16
(Lsrc:let:Expr.6-x* g141.165)
(map (lambda (m) (Expr m))

(Lsrc:let:Expr.6-e* g141.165))
(Expr (Lsrc:let:Expr.6-body g141.165)))]

[(eqv? tag 6)

(make-L1:letrec:Expr.17
(Lsrc:letrec:Expr.7-x* g141.165)
(map (lambda (m) (Expr m))

(Lsrc:letrec:Expr.7-e* g141.165))
(Expr (Lsrc:letrec:Expr.7-body g141.165)))]

[(eqv? tag 7)

(make-L1:set!:Expr.18
(Lsrc:set!:Expr.8-x g141.165)
(Expr (Lsrc:set!:Expr.8-e g141.165)))]

[(eqv? tag 8)

(make-L1:pr:Expr.19
(Lsrc:pr:Expr.9-pr g141.165)
(map (lambda (m) (Expr m))

(Lsrc:pr:Expr.9-e* g141.165)))]
[(eqv? tag 9)

(make-L1:call:Expr.20
(Expr (Lsrc:call:Expr.10-e g141.165))
(map (lambda (m) (Expr m))

(Lsrc:call:Expr.10-e* g141.165)))]
[else

(error 'convert-complex-datum
"unexpected Expr"

g141.165)]))])))))))

2.3.6.4. Tracing passes and transformers. Echoing the code generated by define-pass can

help compiler writers to understand what is happening at expansion time, but it does not help in de-

termining what is happening at run time. To facilitate this type of debugging, passes and transform-

ers can be traced at run time. The tracing system, similar to Chez Scheme’s trace-define-syntax,

unparses the input-language term and output-language term of the pass using the language unparsers

to provide the S-expression representation of the language term that is being transformed.

The trace-define-pass form works just like the define-pass form but adds tracing for the input-

language term and output-language term of the pass. For instance, if we want to trace the processing

of the input:

(car (vector-ref '#((1 2) 3) 0))

the pass can be defined as a tracing pass, as follows:
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(trace-define-pass convert-complex-datum : Lsrc (x) -> L1 ()

(definitions

(define const-x* '())
(define const-e* '())
(define datum->expr

(with-output-language (L1 Expr)

)))

(Expr : Expr (ir) -> Expr ()

[(quote ,d)

(guard (not (constant? d)))

(let ([t (unique-name 't)])
(set! const-x* (cons t const-x*))

(set! const-e* (cons (datum->expr d) const-e*))

t)])

(let ([x (Expr x)])

(if (null? const-x*)

x

`(let ([,const-x* ,const-e*] . . .) ,x))))

Running the class compiler with convert-complex-datum traced produces the following:

> (np-compile '(car (vector-ref '#((1 2) 3) 0)))

|(convert-complex-datum (car (vector-ref '#((1 2) 3) '0)))
|(let ([t.1 (let ([t.2 (make-vector '2)])

(begin

(vector-set! t.2 '0 (cons '1 (cons '2 '())))
(vector-set! t.2 '1 '3)
t.2))])

(car (vector-ref t.1 '0)))
1

The tracer prints the pretty (i.e., S-expression) form of the language, rather than the record repre-

sentation, to allow the compiler writer to read the terms more easily. This does not trace the internal

transformations that happen within the transformers of the pass. Transformers can be traced by

adding the trace keyword in front of the transformer definition. We can run the same test with a

convert-complex-datum that traces the Expr transformer, as follows:

(define-pass convert-complex-datum : Lsrc (x) -> L1 ()

(definitions

(define const-x* '())
(define const-e* '())
(define datum->expr

(with-output-language (L1 Expr)

)))

(trace Expr : Expr (ir) -> Expr ()

[(quote ,d)

(guard (not (constant? d)))

(let ([t (unique-name 't)])
(set! const-x* (cons t const-x*))

(set! const-e* (cons (datum->expr d) const-e*))
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t)])

(let ([x (Expr x)])

(if (null? const-x*)

x

`(let ([,const-x* ,const-e*] . . .) ,x))))

> (np-compile '(car (vector-ref '#((1 2) 3) 0)))

|(Expr (car (vector-ref '#((1 2) 3) '0)))
| (Expr (vector-ref '#((1 2) 3) '0))
| |(Expr '#((1 2) 3))

| |t.1
| |(Expr '0)
| |'0
| (vector-ref t.1 '0)
|(car (vector-ref t.1 '0))
1

Because the datum->expr procedure handles the heavy lifting of producing the expression for cre-

ating the constant, the trace for the quoted vector simply takes the quoted vector and returns the

new temporary generated for it. Here, too, the traced forms are the pretty representation and not

the record representation.

2.4. Comparison with the Prototype Nanopass Framework

2.4.1. Syntactic differences. The most obvious differences between the prototype framework

developed by Sarkar et al. and the one described in this dissertation are the syntactic differences. The

changes to language definitions are largely aesthetic and simplify the parsing performed by the macro

that defines the define-language form. The terminals section is now explicitly defined within the

S-expression terminals form, rather than implicitly between the over and where keywords. The

in keyword also is dispensed with; instead, the terminal type or nonterminal name is followed by a

parenthesized list of meta-variables to represent the language. In an extended language definition,

such as that seen in Figure 2.2, the extends keyword is now parenthesized, and the + and - keywords

are moved within the terminals or nonterminal sections and parenthesized.

Pass definitions also have a slightly different syntax. These changes support the addition of extra

formals and extra return values to a pass. The input-language-term formal to a pass or a transformer

is now bound explicitly. As seen in Figure 2.3, the new format uses the variable ir to represent

the input expression. Explicitly binding the input expression to a visible variable also allows the

input-language term to be referenced in the else clause or in the body of the pass. The new

pass syntax also allows for the input and output nonterminal entry point to be specified. This is

accomplished by listing the language and nonterminal names together in place of the language name.

51



2. THE NANOPASS FRAMEWORK

(define-language L0 over

(x in variable)

(b in boolean)

(n in integer)

where

(Program

Expr)

(e body in Expr

b

n

x

(if e1 e2 e3)

(seq c1 e2) => (begin c1 e2)

(lambda (x . . .) body)

(e0 e1 . . .))
(c in Command

(set! x e)

(seq c1 c2) => (begin c1 c2)))

(define-language L0

(terminals

(variable (x))

(boolean (b))

(integer (n)))

(Program (prog)

e)

(Expr (e body)

b

n

x

(if e1 e2 e3)

(seq c1 e2) => (begin c1 e2)

(lambda (x . . .) body)

(e0 e1 . . .))
(Command (c)

(set! x e)

(seq c1 c2) => (begin c1 c2)))

Figure 2.1. Comparing a language definition between the prototype and new
nanopass frameworks.

(define-language L1 extends L0

over

- (b in boolean)

where

- (Expr b (if e1 e2 e3))

+ (default in Expr

(case x (n1 e1) . . .
default)))

(define-language L1

(extends L0)

(terminals

(- (boolean (b))))

(Expr (e body default)

(- b

(if e1 e2 e3))

(+ (case x (n1 e1) . . .
default))))

Figure 2.2. Comparing language extension between the prototype and new nano-
pass frameworks.

For instance, in place of L0 the term (L0 Command) indicates that the pass should expect a Command

nonterminal. The catamorphism syntax is also extended from the prototype nanopass framework to

support additional arguments to transformers.

2.4.2. Semantic differences. The prototype nanopass framework defines the meta-parser proce-

dure for a language as a compile-time (or meta) definition. The procedure is then retrieved using

eval when a pass definition is encountered. This means that languages can be defined only at the

top level of a program or library. The new nanopass framework allows language definitions in any

scope by making the meta-parser available through the compile-time environment. This allows the

procedure to be found wherever the identifier for the language is in scope.
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(define-pass remove-implicit-begin L0 -> L1

(process-expr-expr : Expr () -> Expr ()

[(lambda (,x . . .) ,[body1] . . . ,[body2])

`(lambda (,x . . .) (begin ,body1 . . . ,body2))]

[(let ((,x ,[e]) . . .) ,[body1] . . . ,[body2])

`(let ((,x ,e) . . .) (begin ,body1 . . . ,body2))]

[(letrec ((,x ,[e]) . . .) ,[body1] . . . ,[body2])

`(letrec ((,x ,e) . . .) (begin ,body1 . . . ,body2))]))

(define-pass remove-implicit-begin : L0 (ir) -> L1 ()

(process-expr-expr : Expr (ir) -> Expr ()

[(lambda (,x . . .) ,[body1] . . . ,[body2])

`(lambda (,x . . .) (begin ,body1 . . . ,body2))]

[(let ((,x ,[e]) . . .) ,[body1] . . . ,[body2])

`(let ((,x ,e) . . .) (begin ,body1 . . . ,body2))]

[(letrec ((,x ,[e]) . . .) ,[body1] . . . ,[body2])

`(letrec ((,x ,e) . . .) (begin ,body1 . . . ,body2))]))

Figure 2.3. Comparing pass definitions between the prototype and new nanopass frameworks.

In the prototype nanopass framework, each pass takes a single input-language term and returns

a single output-language term value. This approach requires that information gathered during an

analysis pass be encoded in the intermediate representation when it is needed in another pass (or

stored in a mutable variable that is visible to both passes). In a commercial compiler, however, it

can be useful to keep information separate from the intermediate representation. To support this,

the new nanopass framework allows passes to take extra arguments and return extra values.

Passes defined in the prototype nanopass framework operate on a full language term, but it can be

useful to operate on a language term that starts from a different nonterminal. For instance, we might

write a set of passes that operate over the functions defined in a program term, without wanting to

pattern match the full program term in each pass.

The prototype and new framework also handle the extra return values for transformers differently.

In the prototype framework, each extra return value requires a procedure to combine the results

from recurring on sub-nonterminals. In a compiler like the one developed in the compiler course, this

is useful for combining lists, such as the lists of free variables gathered during free-variable analysis,

or for merging live variable information during live variable analysis. In a commercial compiler, we

want to avoid using this kind of representation; instead, values are threaded through the transformer

and updated non-destructively along the way as new information is learned. Instead of using an

environment, we modify information directly in a mutable field in the representation of a variable.

The new nanopass framework allows any expression to appear as the extra return value.
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The prototype nanopass framework required every transformer, even those that do not require user-

specified clauses, to be named by the compiler writer. The new framework can autogenerate a

processor when there is a single input-language term and a single output-language term. Auto-

generation is driven by need. When no transformer is found in the lookup for a catamorphism or

autogenerated clause, a new transformer is generated.

In the new nanopass framework, passes can omit the input-language term or output-language term.

A pass can also start processing over a non-entry nonterminal by specifying that the nonterminal

entry point for the pass is part of the signature of the pass.

Two new syntactic forms, nanopass-case and with-output-language, are also provided by the

new nanopass framework. The nanopass-case form allows a language form to be matched outside

of the left-hand side of a pass clause. This can be useful to generate predicates over language terms

or to perform further matching on a sub-form. The nanopass-case form is syntactic sugar for the

define-pass form.

The prototype nanopass framework allows definitions only at the pass level, but the new nanopass

framework also provides a definitions clause within each transformer. When used within a trans-

former, the quasiquote transformer is bound to allow language terms in the output nonterminal to

be constructed.

The prototype nanopass framework restricted the syntax of the define-pass body to contain a single

let-values expression or an empty list. In the new nanopass framework, the body of a pass can

contain zero or more expressions. When the body contains no expressions, the define-pass form

autogenerates the body based on the input and output nonterminals specified by the pass, either

explicitly, by using the language and nonterminal name as the input or output-language specifier,

or implicitly, by specifying the language name and the entry nonterminals for the input and output

language being used. The autogenerated body calls or autogenerates the appropriate transformer

for the expected input-language term.

When unquote is used in the templates on the right-hand side of a transformer clause, the context

of the quasiquote is not updated to expect the field type at that location. Instead, the compiler

writer must explicitly change the context using the in-context transformer. The new nanopass

framework automatically puts the expression in an unquote form into the correct context.

The new nanopass framework also adds an else clause to the possible clauses of a transformer.

This allows the compiler writer to prevent the autogeneration of clauses in this transformer. In a
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commercial compiler, this is an important feature when a transformation should be performed only

on a given form and no automatic recursion is needed, or when writing a predicate that matches

only a few productions.

The with-output-language form allows a language form to be constructed outside of the right-

hand side of a pass clause. This can be useful for functional abstraction and for constructing

terms from an incoming source, such as a parser or the output of a syntax expander. Unlike the

nanopass-case form, the with-output-language form is not syntactic sugar for define-pass.

Instead, it simply creates the same binding for quasiquote as in the body of a transformer. This

allows with-output-language to act as a splicing form, so multiple definitions can be put within

the form and are still scoped at the same level as the with-output-language form.

2.4.3. Engineering improvements. In addition to semantic and syntactic changes, the new nano-

pass framework performs more error checking and produces more meaningful error messages. For

instance, meta-variables are checked for uniqueness. When an error can be determined during ex-

pansion, an exception is immediately raised instead of waiting until run time. When an exception

might occur at run time, every attempt is made to provide the file position information for the

location from where the error originates.

The prototype nanopass framework maintains two representations of the language in the compile-

time environment. The first is an S-expression representation of the information parsed from

the define-language form, and the second is an annotated version of the first that includes the

language-form record information. The define-pass macro looks up this information in the compile-

time environment and converts it to a record representation that it uses for the duration of the macro.

The new nanopass framework avoids the double representation and the conversion from the anno-

tated S-expressions into a record representation by simply representing the language information as

a set of records. Part of the reason that the prototype nanopass framework uses an S-expression

representation is to allow the expander to rewrite the marks and substitutions on identifiers, such

as the terminal predicates, which are not rewritten when stored in records. The new nanopass

framework instead attaches an extra mark to these identifiers, via a local macro, to preserve the

marks.

The prototype nanopass framework uses two different methods to determine the target of a catamor-

phism or the recurrence of a sub-nonterminal of an autogenerated clause. For a catamorphism, the

target is determined by finding a transformer with an input type that matches the input field type,

and an output type that matches the specified output variable type that also supplies the correct
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number of extra return values. For an autogenerated clause, the target is determined solely by the

input field type. The new nanopass framework uses a common procedure to determine the target of

the recursion. It also uses any extra arguments supplied (in the case of a catamorphism) or extra

formals available in the calling transformer (in the case of an autogenerated recursion or catamor-

phism where the arguments are not explicitly supplied) and any extra return values expected to help

narrow down the target. In the new nanopass framework, the lookup procedure is also responsible

for automatically generating new transformers when an appropriate transformer is not supplied by

the compiler writer. This allows transformer autogeneration to be driven by need.

The new nanopass framework also uses an integer tag in place of the record dispatch used in the

prototype framework. This can slightly speed record matching by replacing a potentially looping

record predicate with an efficient fx=? predicate.

2.5. Related Work

Stratego/XT [16] is a DSL for writing source-to-source transformations. It provides a set of com-

binators for matching and rebuilding abstract syntax tree (AST) forms as well as strategies for

performing different traversals of the AST. Stratego does not differentiate between pattern match-

ing and AST construction combinators, and this leads to a matching semantics that is different from

that of the nanopass framework. In particular, if an error occurs when constructing an output term,

the pattern match is treated as a failure, and the next pattern is tried. This can make debugging

more difficult, as the final pattern in a set of matches is often the one that raises an error, even though

the error might have been caused by the construction part of another clause. The internal languages

are also not checked to verify that the grammar is followed, as they are in the nanopass framework.

The combinators and strategies are not without their benefits, however, and transformations can be

written in small pieces and composed into larger transformations.

The JastAdd [43] system allows for the construction of modular and extensible compilers using

Java’s object-oriented class hierarchy, along with an external DSL to specify the abstract syntax

tree and analysis and transformations on these trees. In JastAdd, each type of node in the AST

has an associated class that encapsulates the transformations for that node type. Classes implement

an attribute grammar. Instead of AST pattern matching, as provided by the nanopass framework,

method dispatch and aspects are used for implementing a given compiler class with the visitor

pattern. We believe that there is an advantage to providing pattern matching, in that it simplifies
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the expression of transformations that need to look at the children of a given node, and provides a

compact syntax for what would otherwise require a local tree traversal.

SableCC [49] is a system for building compilers and interpreters in Java. It provides a full set of

tools for writing the lexer and parser for the language and a method for defining multiple passes.

Similar to JastAdd, it works on an AST represented by Java classes. Also similar to JastAdd, it

uses the visitor pattern to implement the language transformations.

POET combines a transformation language and an empirical testing system to allow transformation

to be tuned [97]. Although POET does allow for some generic manipulation of an AST, it is largely

focused on targeting specific regions of source code to be tuned. To this end, it provides a language for

specifying the parsing of fragments of source code and then acts on these AST fragments, preserving

unparsed code across the transformation. The nanopass framework does not deal with concrete

syntax; instead, it relies on the internal representations and parsing to and from S-expressions.3

The ROSE [71] compiler infrastructure provides a C++ library for source-to-source transformation,

along with front-ends and back-ends for both C/C++ and Fortran code. Internally, ROSE represents

source code using the ROSE Object-Oriented IR, with transformations written in C++. Although

there is nothing specific that ties the ROSE transformation framework to C/C++ or Fortran, there

are no tools to easily add new front-ends and back-ends, limiting the usefulness of ROSE for other

languages.

The Rhodium framework takes a different approach from some of the other tools described here.

Instead of building from term rewriting, Rhodium bases its transformations on data-flow equations

and provides a framework for proving the soundness of transformations [67, 75]. The framework

has also been extended to support inferring optimizations from the data-flow semantics defined by

the compiler writer. The data-flow facts are defined over a C-like intermediate representation. A

tool such as this might be a good complement to the nanopass framework, but it would require

the compiler writer to specify both the static semantics of the input and output language and the

data-flow facts.

CodeBoost [14] is an example of a more targeted tool. Although the tool was originally developed

to support the Sophus numerical library, CodeBoost provides a fairly simple way to do compiler

transformations within C++ code. It is implemented using Stratego but provides an array of tools

to make writing C++ code transformations easier. The focus on C++ makes this a much more

focused tool than the nanopass framework is intended to be.

3Of course, in a Scheme compiler, S-expressions are the concrete syntax.
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The template-based metacompiler (Tm) [72] provides a macro language, similar to M4, for gener-

ating data structures and transformations that can be expanded in a language agnostic way. Tm

provides tree-walker and analyzer templates and an existing C back-end for easier use.

Pavilion [96] is a DSL for writing analysis and optimization passes to improve the efficiency of generic

programming in C++. The declarative language extends regular expressions with intersection and

complement operators, variable quantification, path quantification, function definition, and native

language access to Scheme to provide powerful matching during analysis and transformation.

Yoko [47] is a Haskell module for writing functions that transform an input type to a similar output

type that requires that only the interesting cases be specified, similar to how the nanopass frame-

work operates over languages. The module builds on generic programming techniques to provide the

hcompos function. The hcompos function takes the user-specified cases and autogenerates the neces-

sary clauses to handle constructors from the input type not specified by the programmer, matching

them with constructors of the output type with the same name. Because these transformations are

based on Haskell types, functions created in this way are guaranteed to generate terms with the

appropriate output type by the type checker.
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CHAPTER 3

Evaluating the Nanopass Framework

3.1. Introduction

To create a nanopass framework capable of developing a commercial compiler, we need to make a

commercial compiler both to serve as a proof of concept for the framework and to provide feedback to

the development of the framework. Thus, we decided to develop and test the nanopass framework by

replacing the original compiler for Chez Scheme [33] with a new compiler. The new compiler needs

to support all the features, e.g., a complete Revised6 Report on Scheme (R6RS) implementation, a

foreign function interface, a thread system, and debugging and profiling tools, of the existing Chez

Scheme compiler. It also needs to generate code that is on par with the original compiler. The new

compiler makes use of the existing run-time system and Scheme libraries to give us a good starting

point for the new compiler.

Although we could have created a compiler that generates exactly the same machine code as the

existing compiler, developing a new compiler seemed an excellent opportunity to improve on existing

optimizations and to try some different techniques, such as replacing the register allocator with a

graph-coloring register allocator. Although some of the features the new compiler implements are

not as fast as those of the original compiler, we still wanted to keep the speed of the compiler within

a factor of two of the original compiler.

Developing a new commercial compiler also directed how the nanopass framework needed to be

improved to support this effort. As we went through the development process, features missing from

the prototype framework, such as the with-output-language form, were added to the new nanopass

framework. This also led to feature changes, such as better support for additional arguments in the

catamorphism syntax. Additionally, some features, such as the automatic combining of extra return

values from the prototype nanopass framework, were removed.
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3.2. Transitioning a Class Compiler

The class compiler was originally written using an S-expression representation and a match form

that supports catamorphisms to implement the passes. To see how a nanopass framework version

of the class compiler compares, the compiler was re-implemented over the course of a weekend.

The compiler is comprised of 38 passes. It compiles a small subset of Scheme to x86 64 assembly

code. The compiler uses a graph-coloring register allocator and contains a few optimizations, such

as optimizing known calls and optimizing away jumps to jumps. The assembly code is then either

interpreted, through a simple assembly language interpreter written to safely test student compilers,

or compiled with a simple C run time into a stand-alone program.

The class compiler also has a testing framework that evaluates the output of each pass and compares

the result with the value of the original expression evaluated in the host compiler, in this case, Chez

Scheme. The nanopass version of the class compiler, as it was a weekend project, does not support

the testing between passes. As a result, the testing is performed with the evaluation of pass output

disabled in the original compiler so that the two are performing the same tasks.

The code sizes of the two compilers are compared by using the Scheme reader to read the source

files and the pretty printer to print them to a consistent line length. The number of lines of each

expression is then counted to compare the relative lengths. The code for the nanopass compiler

(excluding the common helpers, drivers, and assembly language interpreter used by both) is 18%

shorter than the code for the original class compiler. Comparing the passes directly, the nanopass

compiler is 35% shorter. When the intermediate language definitions are taken into account, the

nanopass compiler with passes and languages is 21% shorter.

The relative speed of the two compilers is also compared on a small set of tests used during the class

to ensure that the student compilers run correctly. The tests were performed using the assembly

language interpreter for both compilers to avoid the round trip to the file system and the cost of

running the external GCC compiler, which could skew the results. The nanopass version compiles

and interprets the assembly code of the tests 52% faster.

3.3. Recreating a Commercial Compiler

3.3.1. Background on Chez Scheme. Chez Scheme is a commercial Scheme compiler for R6RS

Scheme with extensions, first released in 1985 [33] and under continuous development and improve-

ment over the last 27 years [5, 12, 18–21, 30–32, 35–41, 53–56, 59, 60, 91, 93]. The compiler is
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written in Scheme and is comprised of a small number of large, multipurpose passes. The compiler

is almost absurdly fast, able to compile its own source code in roughly three seconds on contemporary

hardware. The compiler is also designed to generate efficient code.

3.3.2. Workings of the existing Chez Scheme compiler. The Chez Scheme compiler begins

with the syntax-case expander, extended with a module system and R6RS libraries [34,40,55,91].

The result of the expander is a simplified core language with letrec, letrec*, and case-lambda

as binding forms, quoted constants, primitive references, procedure calls, variable references, and

a handful of other forms. This simplified form records source information used for debugging and

profiling, through the pass described in Section 3.4.1. The next pass places validity checks for

variable references bound by letrec and letrec* [56,93]. The source optimizer [90] discussed in

Section 3.4.2 is the next pass. The source optimizer can be run one or more times or not at all,

depending on the options set in the compiler. A pass for handling letrec and letrec* [56,93] is run

at least once and is run between each run of the source optimizer. After this, either the interpreter

is invoked to interpret the program or the back-end compiler is invoked to finish compilation and

either execute the resulting code or write the results to the file system.

When the back-end compiler is invoked, the code is still in roughly the same form as the input

language, although letrec* has been eliminated and all letrec bindings now bind only unassigned

variables to case-lambda expressions. The compiler next performs assignment conversion, closure

conversion, various optimizations, and further code simplifications and replaces primitives in the

source language with an internal set of simpler, although still higher level than assembly language,

primitives. It also performs register allocation using a linear-scan style register allocator with a

lazy register save and restore strategy [21], and it generates code using destination-driven code

generation [41].

The back-end consists of five passes. The first pass, cp1, begins the process of closure conversion,

recognizes loops, recognizes direct application of λ-expressions, begins handling multiple return

value calls, sets up the foreign and foreign callable expressions, and converts primitive calls into a

set of slightly lower-level inline calls. The next pass, cpr0, begins the register allocation process,

determines the actual free variables of closures after performing closure optimization, performs

assignment conversion, makes explicit all arguments to inlined primitives, and flags tail calls and

loops. The register allocator reserves the architectural stack register, a Scheme frame pointer register,

a thread context register pointer, and at least two temporary registers, depending on the target

machine architecture, for use by the assembler. After this, the pass cpr1 assigns variables to their
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initial register homes. The cpr2 pass finishes register allocation, generating register saves and

restores across non-tail calls and removing redundant register bindings. Finally, the cp2 pass finishes

compilation, converting the higher-level inlined primitives into a set of high-level instruction inlines

that the assembler can convert into machine instructions for the target platform.

3.3.3. Workings of the new compiler. The new compiler starts with the same set of front-end

passes described in the first paragraph of the preceding section. These passes implement the same

algorithms as the ones in the original compiler but are updated to use the nanopass framework. A

comparison of two of these passes is provided in Section 3.4.

The back-end of the new compiler diverges significantly from that of the original compiler. Where

the original compiler is structured as a set of multipurpose passes that each performs several tasks,

the new compiler is organized as many smaller passes, with each pass completing primarily one task.

Overall there are approximately 50 passes and approximately 35 nanopass languages.

These passes implement most of the optimizations from the original compiler and improve on some.

These improvements include support for implicit cross-library optimization, which is described along

with the library-group form in Chapter 4. The closure optimization process has also been improved

substantially and is described in detail in Chapter 5.

Outside of these optimizations, there is also improved handling of procedures that return multiple-

values. Both the original compiler and the new compiler attempt to push the consumer into the

producer, when the producer is a λ-expression [12]. In both, when a values expression is found in

the tail position of the producer code, an mvlet is used, similar to the way that the direct application

of a λ-expression is recognized as a let. This allows both compilers to avoid creating a closure for

the consumer in these cases.

The original compiler cannot push the consumer into the tails of an if expression because it would

require duplication of the consumer code. The new compiler does push the consumer into the tails

of an if expression by creating a label for the consumer code and using a goto to jump directly to

the consumer code without needing to create a closure.

The new compiler can also efficiently handle chained multiple return value calls, where a consumer

is also a multiple value producer for a following consumer. This works by having each producer

position its return values in the same order as the arguments for the next call, even though they

might need to be shifted on the frame if the final call in the chain is a tail call.
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The other big difference between the original compiler and the new compiler is the use of a graph-

coloring register allocator. This change necessitates several other changes in the compiler, including

the expansion of code into a near-assembly language form much earlier in the compiler. This expan-

sion is required so that all of the temporaries that might be needed for the final code to conform to

the operand requirements of the machine can be met. It also means that a full live analysis must be

performed to compute the conflict graph needed by the register allocator. In the original compiler,

the cost of the live analysis is largely avoided by tracking the liveness of registers, rather than the

liveness of variables. Additionally, in the original compiler, primitive expansion is delayed until code

generation at the cost of reserving two or more registers and, depending on the target architecture,

makes these registers unavailable to the register allocator.

The upside of using a graph-coloring register allocator is that it packs spilled variables tighter on the

frame, makes better use of registers, and generally produces more compact code. The new register

allocator also makes use of move biasing to avoid frame-to-frame moves. This contributes to the

generated code’s faster run time, at the cost of substantial extra compile-time overhead. Both the

original and new compilers also try to make good use of variable saves and restores around non-

tail calls. This means call-live variables can be accessed from a register, rather than from a frame

variable. The original compiler follows a lazy-save strategy [21], while the new compiler attempts

to get similar results through using a heuristic that estimates the cost of saving and restoring versus

the cost of spilling to a frame location permanently. This is one place where the new compiler

underperforms the original compiler.

Not all of the features and optimizations provided by the original compiler are provided by the

new compiler. The most significant missing feature of the original compiler is support for 32-bit

Sparc, 64-bit Sparc, and PowerPC processors, as the new compiler supports only i386 and x86 64.

The most significant missing optimization is block allocation of closures. When several closures are

created at the same time, a single allocation is performed to allocate the space for the entire group

of closures. A more general block allocation optimization is planned for the new compiler but has

not yet been implemented.

3.3.4. Ensuring compatibility. Over the course of Chez Scheme’s development, an extensive

suite of tests, including regression tests, has been developed to ensure that the compiler conforms to

the relevant Scheme standards and that fixed bugs do not recur. Chez Scheme is also bootstrapped,

and the first test of the compiler is to compile itself and verify that code generated for the compiler

is consistent with each run of the compiler. The new compiler passes all of these tests.
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3.4. Comparing Nanopass Passes with Traditional Passes

While a compiler writer might choose the nanopass framework for the convenience of defining lan-

guages and passes, using the convenient S-expression syntax, and minimizing boilerplate code, it

should not happen at the sacrifice of performance. To see how this compares with a more traditional

compiler construction, in this section we compare two passes from Chez Scheme that are similar in

the original compiler and new compiler. The first pass records source code and position information

in the internal representation of language terms, with a simple, linear pass over the language term.

The second pass is the Chez Scheme source optimizer [90] that performs aggressive inlining, constant

propagation, constant folding, copy propagation, and record optimizations. The source optimizer

pass is also linear by design, as the effort and size of each inlining attempt is limited.

The existing Chez Scheme compiler uses an internal representation with tagged vectors and a macro

for matching the vectors and binding the elements of the vector to variables. The compiler also uses

a simple matcher that allows each variant to be matched, or several variants to be matched at once,

if the contents of the vector are not needed.

To test how converting this pass to the nanopass framework affects the run time of the pass, we

instrumented the compiler to record the run time of each pass during compilation. We then com-

piled the benchmarks with the instrumented compiler to record the difference in time between the

original compiler and the new compiler. Three benchmarks suites are used for testing: the R6RS

benchmarks [26]; a set of benchmarks used when testing the source optimizer, which includes some

larger programs, and a smaller set of benchmarks used for testing Chez Scheme. There is some

overlap between the benchmark suites, as all three include benchmarks such as Tak, Fib, and the

Gabriel benchmarks [48]. Because the source pass is linear, and many of the benchmarks are short,

the run time of this pass can be quite small, so we use a fine-grain timer in the instrumentation to

determine how they compare. The measurements are taken on a two CPU, Intel® Core™ i7-3960X

with six cores per CPU, running Fedora 17 Linux with the non-threaded version of Chez Scheme.

The fine-grain timer uses the clock gettime Linux C library routine to determine the number of

nanoseconds used by Scheme, including both user and system time.

3.4.1. Comparing a simple pass. The first step in any R6RS Scheme compiler is macro expan-

sion. In Chez Scheme, the macro expander leaves behind source position information as it runs.

Recording of source information is a good start; however, the source information at this point in

the compiler does not provide all of the information desired for profiling and debugging purposes.
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The source pass records the expanded version of the code in a field on each node of the intermediate

representation and replaces the existing variable representation with a new copy of each variable,

recording the variable generated during expansion as the source field of the fresh variable.

In the original compiler, every valid form in the internal representation must be visited to update

the source fields and to recur through fields of the production that contain other expression nodes.

The nanopass framework allows us to rewrite this pass in a shorter form. We can avoid explicitly

matching forms that do not contain a source or variable record, as the framework will fill in clauses

for the other language forms. When this pass was first written, this provided some reduction in

the size of the code, but not as much as we had hoped. Examining the source code for the new

version of the source pass, it was evident that the pass could be rewritten in a simpler form, if

the nanopass framework allowed transformers to operate over terminals. This is an example of

how implementing the new compiler informed the design of the new nanopass framework. After

adding the terminal transformer functionality to the nanopass framework, it was possible to add a

transformer for handling the source records. This allows us to eliminate any clause that does not

contain a variable record. Finally, we can eliminate variable assignment and references by adding

another terminal transformer for variable references. In the end the pass only explicitly names the

binding forms in the language at this point: case-lambda, letrec, and letrec*.

Table 3.1 presents a comparison of the code size of the two versions of this pass.

Table 3.1. Comparing line and character counts for original and nanopass versions
of cpsrc.

Version lines characters
Original 87 440
Nanopass 55 286

Table 3.2 shows the average of the normalized times on both the 32-bit and 64-bit versions of Chez

Scheme at optimize level 2 and optimize level 3. The table also includes the normalized total time

for compiling all of the benchmarks. Each benchmark is compiled five times, with a maximum

generation collection run between each compile. The times and statistical information are then

averaged for that benchmark.

The 32-bit version of the new compiler performs similarly to the original compiler in the time spent

in the pass. On average, the new compiler runs the pass at 1.01 times as long at optimize level 2

and optimize level 3. The overall time for compiling all the benchmarks on the 32-bit machine is
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Table 3.2. Run time of the nanopass version of cpsrc relative to the original version.

Optimization level Machine type Average relative time Total relative time
2 x86 1.01 1.07
2 x86 64 1.06 1.10
3 x86 1.01 1.06
3 x86 64 1.05 1.10

slightly slower. The new compiler takes 1.07 times as long at optimize level 2 and takes 1.06 times

as long at optimize level 3.

The 64-bit version of the new compiler is slightly slower than the original compiler. On average, the

new compiler runs the pass at 1.06 times as long at optimize level 2 and 1.05 times as long at optimize

level 3. The overall time for compiling all the benchmarks on the 64-bit machine is slower. The new

compiler takes 1.10 times as long at optimize level 2 and optimize level 3. Figure 3.1 presents the

normalized results of running the R6RS benchmarks; Figure 3.2 presents the normalized results of

running the benchmarks used for testing the source optimizer; and Figure 3.3 presents the normalized

results of running the Chez Scheme benchmarks.

When the benchmarks were first tested, the ddd benchmark was an outlier in the data, requiring

more time to compile on the 64-bit machine by a factor of 7.97 at optimize level 2 and 7.29 at

optimize level 3, and on the 32-bit machine at 2.48 at optimize level 2 and optimize level 3. The

cause of the high run time of the cpsrc pass when compiling ddd turned out to be related to garbage

collection. Something about the benchmark was tickling the garbage collector in the new compiler

in a way that it did not in the original compiler. The effect of the garbage collector was not limited

to making the performance worse, as on the 32-bit machine when compiling the R6RS compiler

benchmark the new compiler runs the cpsrc pass at a factor of 0.01 due to garbage collection in the

original compiler.

To avoid the effects of the garbage collector, we now perform a maximum collection just before the

cpsrc pass runs. This helps to stabilize the results, which now range, on the 32-bit version, between

a factor of 0.898 and 1.23 at optimize level 2 and between a factor of 0.920 and 1.25 at optimize

level 3 and, on the 64-bit version, between a factor of 0.671 and 1.42 at optimize level 2 and between

a factor of 0.534 and 1.50 at optimize level 3.

3.4.2. Comparing the source optimizer. The source optimizer pass implements constant prop-

agation, constant folding, copy propagation, and bounded aggressive procedure inlining [90]. It also

implements record optimization [63]. The pass is composed of a set of inliners for primitive folding,
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Figure 3.1. Normalized run time of cpsrc pass for R6RS benchmarks.
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Figure 3.2. Normalized run time of cpsrc pass for new benchmarks.
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Figure 3.3. Normalized run time of cpsrc pass for benchmarks.
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code to support code copying and procedure inlining, and a set of predicates to determine when

expressions are, for example, simple or pure. This means that much of the code is not involved

directly in matching language forms; instead, there are smaller amounts of matching surrounded by

the code that implements the source inliner. As such, we do not expect much benefit from switching

to the nanopass framework, at least in terms of code size, as the matches that need to be performed

are essentially the same in both versions of the pass.

Table 3.3 confirms that there is little difference in the size of the two versions of the optimization

pass.

Table 3.3. Comparing line and character counts for the original and nanopass
versions of cp0.

Version lines characters
Original 3687 15906
Nanopass 3571 16002

Table 3.4 shows the average of the normalized times on both the 32-bit and 64-bit versions of Chez

Scheme at optimize level 2 and optimize level 3. The table also includes the normalized total time

for compiling all of the benchmarks. The compiler is run five times on each benchmark, with a

maximum generation collection run between each compile. The times and statistical information

are then averaged for that benchmark.

Table 3.4. Run time of the nanopass version of cp0 relative to the original version.

Optimization level Machine type Average relative time Total relative time
2 x86 1.17 1.03
2 x86 64 1.22 1.15
3 x86 1.15 0.97
3 x86 64 1.21 1.07

Figure 3.4 presents the normalized results of running the R6RS benchmarks; Figure 3.5 presents the

normalized results of running the benchmarks used for testing the source optimizer; and Figure 3.6

presents the normalized results of running the Chez Scheme benchmarks.

On the 32-bit version of Chez Scheme, the average normalized time is 1.17 at optimize level 2 and

1.15 at optimize level 3. This indicates that there is a bit of expense in the nanopass version of the

pass. If we total the numbers, however, and normalize them, we see that the total time for running

this pass is closer to on par with the original compiler with the nanopass version running at a factor

of 1.03 at optimize level 2 and running at a factor of 0.97 at optimize level 3.
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Figure 3.4. Normalized run time of cp0 pass for the R6RS benchmarks.
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Figure 3.5. Normalized run time of cp0 pass for the source optimizer benchmarks.
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Figure 3.6. Normalized run time of cp0 pass for the Chez Scheme benchmarks.
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On the 64-bit version of Chez Scheme, the average normalized time is 1.22 at optimize level 2 and

1.21 at optimize level 3. This indicates, again, that there is some expense in the nanopass version of

the pass. Again, however, by normalizing the total numbers, we can see that the total time is closer

to being on par, with the run time of the pass being slower at a factor of 1.15 at optimize level 2

and a factor of 1.07 at optimize level 3. Again, the fine-grain timer is used to allow us to see details

of the run times, which are often less than a millisecond.

3.5. Comparing the Speed of Generated Code

We set out with the goal of the new compiler generating code that is on par with the original

compiler. We compare the performance of the original and new compiler on a set of benchmarks

that includes the R6RS benchmarks [26]; a set of benchmarks, including some larger benchmarks,

used to test the source optimizer; and a set of smaller benchmarks used for benchmarking Chez

Scheme.

The benchmark data was generated on the same Intel® Core™ i7-3960X with two CPUs and six

cores per CPU and 64 GB of RAM used for the individual pass timings. The tests were conducted at

both optimize level 2 (run-time type-checking enabled) and optimize level 3 (run-time type-checking

disabled), using both the 32-bit and 64-bit instruction sets. On average, the new compiler generates

faster code, between 15.0% faster at optimize level 3, using the 64-bit instruction set, and 26.6% at

optimize level 2, using the 32-bit instruction set.

Two of the benchmarks, similix, a self-applicable partial evaluator, and softscheme, a benchmark

that performs soft typing, make use of the compiler during the run of the application. This negatively

affects the run time of these benchmarks and the overall average, as the new compiler is slower than

the original compiler. Table 3.5 shows the normalized run time of these benchmarks on both the

32-bit and 64-bit versions of the compiler and at optimize level 2 and optimize level 3.

Table 3.5. Normalized run times of the similix and softscheme benchmarks.

Optimization level Machine type Similix Soft Scheme
2 x86 1.54 1.27
2 x86 64 1.41 1.32
3 x86 1.29 1.22
3 x86 64 1.39 1.24

Outside of these two outliers, the performance ranges on the 32-bit version between 0.417 and 1.05

at optimize level 2 and between 0.457 and 1.05 at optimize level 3 and, on the 64-bit version, between

0.519 and 1.03 at optimize level 2 and between 0.489 and 1.14 at optimize level 3. Figure 3.7 shows
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the normalized performance of the R6RS benchmarks; Figure 3.8 shows the normalized performance

of the benchmarks used for testing the source optimizer; and Figure 3.9 shows the normalized

performance of the Chez Scheme benchmarks.

On average, benchmarks compiled with the new compiler outperform those compiled with the original

compiler. As discussed in Section 3.3, the new compiler contains several improvements over the

original compiler, and each of these contributes to the better performance of the benchmarks. The

biggest contributing factor, and the one that is consistent in all of the benchmarks, is the graph-

coloring register allocator.

The graph-coloring register allocator makes more registers available to the register allocator. In the

original compiler, register allocation is performed on a set of higher-level operations. The assembler

is then responsible for converting these higher-level operations into machine-specific assembly lan-

guage, and it reserves registers for its use. This is particularly constraining on the 32-bit Intel®

architecture, where only eight registers are available. Several of these registers are already spoken for

as a means to store items such as the architectural stack pointer, the frame pointer, and the thread

context. The new compiler exposes a set of operations that are much closer to machine-specific

assembly language and exposes all of the operands to the register allocator.

3.6. Comparing Compilation Speed

We set out with the goal of implementing a new compiler that ran within a factor of two of the

original compiler. The extra compile-time budget allows features such as a graph-coloring register

allocator to be implemented in the new compiler, even though it is more expensive than the register

allocator in the original compiler.

The two compilers are tested by compiling each benchmark five times and averaging the compilation

times. The compile times are then normalized, using the original compiler as a base. On average,

the compile times are better than the target times, averaging a factor of 1.71 on the 32-bit version at

optimize level 2, 1.64 on the 32-bit version at optimize level 3, 1.75 on the 64-bit version at optimize

level 2, and 1.71 on the 64-bit version at optimize level 3. These numbers include the time spent

in garbage collection. If the garbage collection time is removed, the factor is 1.67 on the 32-bit

version at optimize level 2, 1.60 on the 32-bit version at optimize level 3, 1.69 on the 64-bit version

at optimize level 2, and 1.65 on the 64-bit version at optimize level 3. These numbers fall well within

the goal that we set for ourselves. Nevertheless, further tuning is still necessary to try to get the

compile times for the new compiler even closer to that of the original compiler.
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Figure 3.7. Normalized run-time performance of the R6RS benchmarks.
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Figure 3.8. Normalized run-time performance of the source optimizer benchmarks.
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Figure 3.9. Normalized run-time performance of the Chez Scheme benchmarks.
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The compile time varies from one benchmark to another. On the 32-bit version, the normalized time

ranges from a factor of 1.00 to 4.44 at optimize level 2 and 0.968 to 3.13 at optimize level 3. On the

64-bit version, normalized time ranges from a factor of 1.00 to 4.73 at optimize level 2 and 1.00 to

3.80 at optimize level 3. Figure 3.10 shows the normalized compile times for the R6RS benchmarks;

Figure 3.11 shows the compile times for the source optimizer benchmarks; and Figure 3.12 shows

the normalized times for the Chez Scheme benchmarks.

It is natural to assume that the variance in compile times is related to the increased computational

complexity of the graph-coloring register allocator; however, this does not seem to be the case.

Figure 3.13 shows the normalized times versus the lines of expanded source code. The number of

lines of expanded source code is determined by pretty printing the results of the expander run on

each benchmark and then counting the number of line breaks. The graph in Figure 3.13 shows that

some of the short benchmarks are also those that have the worst relative compile times. Overall,

there does not seem to be a direct relationship between the number of lines of expanded code and the

normalized compile time. An understanding of why this occurs might lead to overall improvements

in compile time.

3.6.1. Breaking down the front-end and back-end. The front-ends of the two compilers are

similar, with the same set of passes implementing the same algorithms. The only difference between

the two is that the front-end of the new compiler uses the nanopass framework, where the original

compiler uses a tagged vector representation. The back-ends of the compilers, in contrast, diverge

significantly. Thus, it makes sense to break the compilation times down into front-end and back-end

times to help determine the source of the overhead.

3.6.1.1. Comparing compiler front-ends. The front-ends of both compilers often run fast

enough on the benchmarks that the fine-grain timer is needed to measure the time used. As ex-

pected, the time of the front-end for both compilers is similar. These times include the time taken

by the Scheme reader, which is the same on both compilers. On average, the 32-bit version of the

compiler had a compile time at a relative factor of 0.96 at both optimize level 2 and optimize level

3. The 64-bit version of the compiler had a compile time at a relative factor of 1.03 at both optimize

level 2 and optimize level 3. The similar times on the front-end of the two compilers demonstrates

that the nanopass framework adds only minimal overhead when compared with the tagged vector

representation used by the original compiler.

Figure 3.14 shows the normalized times for running the front-end of the compiler with the R6RS

benchmarks; Figure 3.15 shows the normalized times with the source optimizer benchmarks; and
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Figure 3.10. Normalized compile-time performance of the R6RS benchmarks.
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Figure 3.11. Normalized compile-time performance of the source optimizer benchmarks.
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Figure 3.12. Normalized compile-time performance of the Chez Scheme benchmarks.
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Figure 3.13. Normalized compile times vs. the size of the expanded source code.
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Figure 3.16 shows the normalized front-end times for the Chez Scheme benchmarks. The normalized

average on the 32-bit version of the compilers ranges from 0.736 to 1.71 at optimize level 2 and 0.455

to 1.54 at optimize level 3. The normalized average on the 64-bit version of the compilers ranges

from 0.835 to 1.73 at optimize level 2 and 0.476 and 1.63 at optimize level 3. The front-end spends

more time in the garbage collector for the softscheme benchmark on the new compiler, which is

part of the reason that it is at the top of the normalized times.

3.6.1.2. Comparing compiler back-ends. Unlike the front-ends of the two compilers, the back-

ends vary significantly and contribute to most of the compile-time difference. The 32-bit version

of the new back-end runs at an average normalized time of 2.01 at optimize level 2 and 1.91 at

optimize level 3. The 64-bit version of the new back-end runs at an average normalized time of 2.14

at optimize level 2 and 2.11 at optimize level 3. These times are based on the fine-grain timer, as

some of the benchmarks compile fast enough that there is no measurable time at the granularity

of the normal Chez Scheme statistics package. Figure 3.17 shows the normalized times for running

the back-end of the compiler with the R6RS benchmarks; Figure 3.18 shows the normalized times

with the source optimizer benchmarks; and Figure 3.19 shows the normalized back-end times for

the Chez Scheme benchmarks.

3.6.2. Analyzing pass overhead. Although the new compiler performs well, despite having ten

times as many passes in the back-end, we wanted to get a better understanding of the expense of

adding new passes. This expense is difficult to measure directly, partially because the new compiler

has several “passes” that avoid traversing the entire intermediate representation of the program and

partially because the number of nodes in the intermediate representation increase as primitives are

expanded into inline code and machine-specific constraints are imposed on the results.

To try to measure this we have devised two measurement methods. The first adds a new “dummy”

pass for each real pass and times the running of both the dummy pass and the real pass on the

input. The traversal overhead for the pass is then calculated by dividing the time for the dummy

pass by the time for the real pass. These are averaged for all of the passes in the compiler to get an

idea of the aggregate overhead.

The second adds only three dummy passes in strategic places in the compiler to determine the cost

of adding a pass near the entry point of the back-end, after primitive expansion, and after machine-

specific constraints are imposed. These passes are timed, along with the real passes of the compiler,

and their effect is determined by dividing the timing for each by the total run time for the back-end,

excluding the dummy passes.
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Figure 3.14. Normalized front-end compile-time performance of the R6RS benchmarks.
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3.6.2.1. Traversal overhead. To determine an estimate of the average traversal overhead for each

pass we autogenerated a dummy pass for each real pass and timed the running of each pass with

the same input. The new compiler uses a handful of common syntactic forms that allows us to

instrument each pass in a similar way to record timing statistics and to inspect the output of passes

by name when the compiler is running. This provided a hook for the dummy passes to be added.

Unfortunately, not every pass in the compiler traverses the entire intermediate program term, and

some of those that do, do not generate an output term. In fact, some passes do not look at the

intermediate program term at all because they are driven entirely by information gathered outside

the program term. Each dummy pass, however, always traverses the entire intermediate program

term and produces a new output term. This mismatch in effort skewed the results, as a dummy pass

might take longer to run than a real pass that does not need to traverse the entire term.

To avoid this problem, we did not include in the average traversal overhead those passes that do

not traverse the entire program term and those that do not produce an output term. This excludes

a number of passes in the register allocator that either operate over the list of variables needing

frame or register allocation or that operate only over information captured by the basic blocks of

the program term and do not traverse the contents of the basic block.

Even with this provision in place, the garbage collector sometimes causes a pass to take more time

than it otherwise would. To avoid the affects of the garbage collector, we removed the time spend

in garbage collection from the time for each pass. Both the pass time and garbage collection time

are measured using the fine-grain timer, as the pass times are often too small to measure with the

millisecond statistics package.

The same three suites of benchmarks used throughout this chapter are also used to determine the

traversal overhead. On the 32-bit version of the compiler, the traversal overhead is 68.5% at optimize

level 2 and 68.6% at optimize level 3. On the 64-bit version of the compiler, the traversal overhead

is 68.8% at optimize level 2 and 69.0% at optimize level 3.

The traversal overhead on the 32-bit version ranges from 62.0% to 81.8% at optimize level 2 and

61.9% to 82.4% at optimize level 3. The traversal overhead on the 64-bit version ranges from 63.6%

to 80.8% at optimize level 2 and 62.1% to 83.2% at optimize level 3. These numbers appear to

indicate that the majority of the time in each pass is spent traversing the input-language term and

constructing the output-language term. Because many of the passes measured change only a few

productions from the input-language term, it makes sense that the timing for each dummy pass and

the related pass are similar.
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3.6.2.2. Overhead at each expansion stage. Although the traversal overhead gives us some

insight into the time of a dummy pass relative to its equivalent real pass, it does not inform us

directly about the expense of adding a pass to a given place in the compiler. To understand this

better, we created three dummy passes, one for each step in the compiler where the code expands.

The first dummy pass is inserted immediately following the first back-end pass. This helps determine

the expense of adding a pass before any primitive expansion has occurred. We will refer to this pass as

the source pass. The second dummy pass is inserted immediately following the primitive expansion

pass. We will refer to this pass as the post-primitive expansion pass. The final dummy pass is

inserted immediately following the instruction selector, which imposes machine-specific constraints

and produces an output-language term that is close to assembly language. We will refer to this pass

as the post-instruction selection pass.

Table 3.6 shows the percentages of the back-end compile time spent in each of the passes on 32-bit

and 64-bit versions of the compiler at optimize level 2 and optimize level 3. The numbers in the

table reflect our natural intuition that the traversal expense of a pass increases as the program

term that is being compiled expands. This suggests that, if we could find a way to avoid expansion

until later in the compiler, this could improve performance, even without reducing the total number

of passes. The original compiler, for instance, avoids most of this expansion until its final pass.

The new compiler could also, potentially, avoid some of this expansion by using a higher-level set

of operations, instead of using low-level instructions similar to assembly language. Unfortunately,

doing this might mean sacrificing some of the benefits of the graph-coloring register allocator.

Table 3.6. Percentage of back-end time for each of three dummy passes, one after
the initial back-end pass, one after the primitive expansion pass, and one after the
instruction selection pass.

Opt. level Machine Source Post-primitive exp. Post-instruction select.
2 x86 0.198% 0.529% 2.19%
2 x86 64 0.217% 0.624% 2.19%
3 x86 0.236% 0.527% 2.18%
3 x86 64 0.258% 0.602% 2.20%
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Figure 3.15. Normalized front-end compile-time performance of the source opti-
mizer benchmarks.
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Figure 3.16. Normalized front-end compile-time performance of the Chez Scheme benchmarks.
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Figure 3.17. Normalized back-end compile-time performance of the R6RS benchmarks.
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Figure 3.18. Normalized back-end compile-time performance of the source opti-
mizer benchmarks.
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Figure 3.19. Normalized back-end compile-time performance of the Chez Scheme benchmarks.
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CHAPTER 4

Cross-library Optimization

4.1. Introduction

A major difference between the language defined by the Revised6 Report on Scheme (R6RS) and

earlier dialects is the structuring of the language into a set of standard libraries and the provision for

programmers to define new libraries of their own [83]. New libraries are defined via a library form

that explicitly names its imports and exports. No identifier is visible within a library unless explicitly

imported into or defined within the library. As such, each library essentially has a closed scope that,

in particular, does not depend on an ever-changing top-level environment, as in earlier Scheme

dialects. Further, the exports of a library are immutable, both in the exporting and importing

libraries. The compiler (and programmer) can thus be certain that, if cdr is imported from the

standard base library, it really is cdr and not a variable whose value might change at run time. This

is a boon for compiler optimization, as it means that cdr can be open coded or even folded, if its

arguments are constants.

Another boon for optimization is that procedures defined in a library, whether exported or not,

can be inlined into other procedures within the library, as there is no concern that some importer

of the library can modify the value. For the procedures that a compiler cannot or chooses not to

inline, the compiler can avoid constructing and passing unneeded closures, bypass argument-count

checks, branch directly to the proper entry point in a case-lambda, and perform other related

optimizations [33].

Yet another benefit of the closed scope and immutable bindings is that the compiler often can

recognize most or all calls to a procedure from within the library in which it is defined and verify

that an appropriate number of arguments is being passed to the procedure; it can also issue warnings

when it determines that this is not the case. If the compiler performs some form of type recovery [81],

it might also be able to verify that the types of the arguments are correct, despite the fact that Scheme

is a latently typed language.
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The success of the library form can be seen by the number of libraries that are already available [2].

Part of the success can be traced to the portable library implementations produced by Van Ton-

der [88] and Ghuloum and Dybvig [55]. The portable library implementations form the basis for at

least two R6RS Scheme implementations [25,51], and Ghuloum’s system is available on a variety of

R5RS Scheme implementations [52].

The library mechanism is specifically designed to allow separate compilation of libraries, although

it is generally necessary to compile each library upon which a library depends before compiling the

library itself [53,55]. Thus, it is natural to view each library as a single compilation unit, which is

what existing implementations support. Yet, separate compilation does not directly support three

important features:

• cross-library optimization, e.g., inlining, copy propagation, lambda lifting, closure optimiza-

tions, type specialization, and partial redundancy elimination;

• extension of static argument count and type checking across library boundaries; and

• the merging of multiple libraries (and possibly an application’s main routine) into a single

object file so that the distributed program is self-contained and does not expose details of the

structure of the implementation.

This chapter introduces two methods to support these features. The first is the library-group form

that allows a programmer to specify a set of libraries and an optional program to be combined as

a single compilation unit. The second is implicit cross-library optimization, where an intermediate

representation of some constants and procedures are attached to the identifiers exported from a

library and can be inlined when the identifier is referenced in another library or program.

Each library contained within the group might or might not depend on other libraries in the group,

and if an application program is also contained within the group, it might or might not depend

on all of the libraries. In particular, additional libraries might be included for possible use (via

eval) when the application is run. The library-group form does not require the programmer

to restructure the code. That is, the programmer can continue to treat libraries and programs as

separate entities, typically contained in separate source files, and the libraries and programs remain

portable to systems that do not support the library-group form. The library-group form merely

serves as a wrapper that groups existing libraries together for purposes of analysis and optimization

but has no other visible effect. Even though the libraries are combined into a single object file, each

remains visible separately outside of the group.
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For many languages, the library-group form would be almost trivial to implement. In Scheme,

however, the implementation is complicated significantly by the fact that the compilation of one

library can involve the use of another library’s run-time bindings. That is, as each library in a

library group is compiled, it might require another in the same group to be compiled and loaded.

This need arises from Scheme’s procedural macros. Macros are defined by transformers that are

themselves coded in Scheme. Macro uses are expanded at compile time or, more precisely, expansion

time, which precedes compilation. If a macro used in one library depends on the run-time bindings

of another, the other must be loaded before the first library can be compiled. This need arises even

when libraries do not export keyword (macro) bindings, although the export of keywords can cause

additional complications.

As with libraries themselves, the library-group implementation is handled entirely by the macro

expander and adds no burdens or constraints on the rest of the compiler. This makes it readily

adaptable to other implementations of Scheme and even to implementations of other languages that

support procedural macros, now or in the future.

The library-group form provides a powerful mechanism for combining libraries, but we would also

like to provide automatic cross-library optimization when the library-group form is not used. In

this case, when a library is compiled to a file, extra information is recorded in the binary that allows

cross-library optimization to occur when the library is used. Rather than storing a near-source

internal representation for each exported run-time identifier, the source optimization pass [90] helps

identify constants and procedures that are likely to be inlinable. When another library or program

imports the compiled library, identifiers with this information attached participate in the source

optimization process as if the source code were included in the same source file. Not all constants

can be copied, however, as constant pairs, vectors, and other quoted complex data types must remain

pointer-equivalent, and copying breaks this equivalence. Procedures are considered inlinable if they

are both small enough to be inlined in the library in which they are defined and have no free variables

that refer to local bindings within the library.4

Even with the addition of implicit cross-library optimizations, the library-group form is still

necessary for obtaining certain kinds of optimizations. For instance, constants for constructing items

such as pairs, vectors, and records that cannot be copied with implicit cross-library optimization

can be constant propagated across library boundaries within the library-group form. Similarly,

procedure code that was too large to be included in a cross-library optimization might still be

4All definitions in a library are considered local bindings to allow inlining within the library, but references to identifiers

imported from other libraries or to primitives are not.
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small enough to inline when applied directly in the body of another library or program with the

library-group form. References to library globals, or to variables bound within the body of a

library, that cannot be used by the implicit cross-library optimizations can potentially be inlined

across library boundaries within the library-group form. This is possible because the library group

has access to all of the source code of the defining library, even that which is not exported, and

the dependencies of the library group inherently include the full dependencies for all of the libraries

included in the library group.

While the library-group form is handled entirely in the expander, automatic cross-library op-

timization requires both the expander and the source optimization pass to be involved. When a

library is compiled, the expander creates placeholders for the information to be associated with the

exported identifier, and the source optimizer fills in this location when appropriate. When a library

identifier that has inlining information is referenced in call position, the expander is responsible for

replacing the reference with the inlinable expression, when it is available. The source inliner also

replaces references to library globals. If the optimization information for a library global contains a

quoted constant or primitive reference, it is always inlined. If the optimization information contains

a procedure expression, it is inlined when it is in call context or is replaced with a true value when

it is in test context.

The remainder of this chapter is organized as follows. Section 4.2 provides background on the

library form and Ghuloum’s library implementation, which we use as the basis for describing

our implementation. Section 4.3 introduces the library-group form and contains a discussion

of what the expander produces for a library group and how it does so. Section 4.4 presents our

implementation of automatic cross-library optimization. Section 4.5 provides an illustration of when

cross-library optimization is helpful. Sections 4.6 and 4.7 include related and future work, and

Section 4.8 presents our conclusions.

4.2. Background

This section includes a description of R6RS libraries and top-level programs, which are the building

blocks for our library groups. It also covers those aspects of Ghuloum’s implementation of libraries

that are relevant to our implementation of library groups.

4.2.1. Libraries and top-level programs. An R6RS library is defined via the library form, as

illustrated by the following trivial library.
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(library (A)

(export fact)

(import (rnrs))

(define fact

(lambda (n)

(if (zero? n) 1 (* n (fact (- n 1)))))))

The library is named (A), exports a binding for the identifier fact, and imports from the (rnrs)

library. The (rnrs) library exports bindings for most of the identifiers defined by R6RS, including

define, lambda, if, zero?, *, and -, which are used in the example. The body of the library

consists only of the definition of the exported fact.

For our purposes,5 library names are structured as lists of identifiers, e.g., (A), (rnrs), and

(rnrs io simple). The import form names one or more libraries. Together with the definitions

in the library’s body, the imported libraries determine the entire set of identifiers visible within the

library’s body. A library’s body can contain both definitions and initialization expressions, with the

definitions preceding the expressions. The identifiers defined within a library are either run-time

variables, defined with define, or keywords, defined with define-syntax.

Exports are simply identifiers. An exported identifier can be defined within the library, or it can

be imported into the library and re-exported. In Scheme, types are associated with values, not

variables, so the export form does not include type information, as it typically would for a statically

typed language. Exported identifiers are immutable. Library import forms cannot result in cyclic

dependencies; thus, the direct dependencies among a group of libraries always form a directed acyclic

graph (DAG).

The R6RS top-level program below uses fact from library (A) to print the factorial of 5.

(import (rnrs) (A))

(write (fact 5))

All top-level programs begin with an import form that lists the libraries upon which it relies. As with

a library body, the only identifiers visible within a top-level program’s body are those imported

into the program or defined within the program. A top-level-program body is identical to a library

body.6

5This description suppresses several details of the syntax, such as support for library versioning, renaming of imports

or exports, identifiers exported indirectly via the expansion of a macro, and the ability to export other kinds of

identifiers, such as record names.
6Definitions and initialization expressions can be interleaved in a top-level-program body, but this is a cosmetic

difference of no importance to our discussion.

97



4. CROSS-LIBRARY OPTIMIZATION

The definitions and initialization expressions within the body of a library or top-level program are

evaluated in sequence. The definitions can, however, be mutually recursive. The resulting semantics

can be expressed as a letrec*, which is a variant of letrec that evaluates its right-hand-side

expressions in order.

4.2.1.1. Library phasing. Together, Figures 4.1, 4.2, and 4.3 illustrate how the use of macros

can lead to the need for phasing between libraries. The (tree) library implements a basic set of

procedures for creating, identifying, and modifying simple tree structures built using a tagged vector.

Each tree node has a value and list of children, and the library provides accessors for obtaining the

value of the node and the children. As with library (A), (tree) exports only run-time (variable)

bindings.

Library (tree constants) defines a macro that can be used to create constant (quoted) tree struc-

tures and three variables bound to constant tree structures. The quote-tree macro does not simply

expand into a set of calls to make-tree because that would create (non-constant) trees at run time.

Instead, it directly calls make-tree at expansion time to create constant tree structures. This sets

up a compile-time dependency for (tree constants) on the run-time bindings of (tree).

Finally, the top-level program shown in Figure 4.3 uses the exports of both the (tree) library and

the (tree constants) library. Because it uses quote-tree, it depends upon the run-time exports

of both libraries at compile time and at run time.

(library (tree)

(export make-tree tree? tree-value

tree-children)

(import (rnrs))

(define tree-id #xbacca)

(define make-tree

(case-lambda

[() (make-tree #f '())]
[(v) (make-tree v '())]

[(v c) (vector tree-id v c)]))

(define tree?

(lambda (t)

(and (vector? t)

(eqv? (vector-ref t 0) tree-id))))

(define tree-value

(lambda (t) (vector-ref t 1)))

(define tree-children

(lambda (t) (vector-ref t 2))))

Figure 4.1. The (tree) library, which implements a tree data structure.
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(library (tree constants)

(export quote-tree t0 t1 t2)

(import (rnrs) (tree))

(define-syntax quote-tree

(lambda (x)

(define q-tree-c

(lambda (x)

(syntax-case x ()

[(v c* . . .)
(make-tree #'v

(map q-tree-c #'(c* . . .)))]
[v (make-tree #'v)])))
(syntax-case x ()

[( ) #'(quote-tree #f)]

[(quote-tree v c* . . .)
#`'#,(make-tree #'v

(map q-tree-c #'(c* . . .)))])))
(define t0 (quote-tree))

(define t1 (quote-tree 0))

(define t2 (quote-tree 1 (2 3 4) (5 6 7))))

Figure 4.2. The (tree constants) library, which defines a mechanism for creat-
ing constant trees and a few constant trees of its own.

(import (rnrs) (tree) (tree constants))

(define tree->list

(lambda (t)

(cons (tree-value t)

(map tree->list (tree-children t)))))

(write (tree->list t0))

(write (tree->list t1))

(write (tree-value (car (tree-children t2))))

(write (tree->list (quote-tree 5 (7 9))))

Figure 4.3. A program that uses the (tree) and (tree constants) libraries.

The possibility that one library’s compile-time or run-time exports might be needed to compile

another library sets up a library phasing problem that must be solved by the implementation. We

say that a library’s compile-time exports (i.e., macro definitions) comprise its visit code, and its

run-time exports (i.e., variable definitions and initialization expressions) comprise its invoke code.

When a library’s compile-time exports are needed (to compile another library or top-level program),

we say that the library must be visited, and when a library’s run-time exports are needed (to compile

or run another library or top-level program), we say that the library must be invoked.

In the tree example, the library (tree) is invoked when the library (tree constants) is compiled

because the quote-tree forms in (tree constants) cannot be expanded without the run-time
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exports of (tree). For the same reason, library (tree) is invoked when the top-level program in

Figure 4.3 is compiled. Library (tree constants) is visited when the top-level program is compiled

due to the use of quote-tree. Finally, both libraries are invoked when the top-level program is run

because the run-time bindings of both are used.

The tree example takes advantage of implicit phasing [55]. R6RS also allows an implementation to

require explicit phase declarations as part of the import syntax. The library-group form described

in this chapter and its implementation are not tied to either phasing model. As such, this chapter

contains no further discussion of the differences between implicit and explicit phasing.

4.2.2. Library implementation. The compiled form of a library consists of metadata, compiled

visit code, and compiled invoke code. The metadata represents information about the library’s

dependencies and exports, among other things. The compiled visit code evaluates the library’s

macro-transformer expressions and sets up the bindings from keywords to transformers. The com-

piled invoke code evaluates the right-hand sides of the library’s variable definitions, sets up the

bindings from variables to their values, and evaluates the initialization expressions.

When the first import of a library is seen, a library manager locates the library, loads it, and records

its metadata, visit code, and invoke code in a library record data structure, as illustrated for libraries

(tree) and (tree constants) in Figure 4.4. The metadata consist of the library’s name, a unique

identifier (UID), a list of exported identifiers, a list of libraries that must be invoked before the

library is visited, and a list of libraries that must be invoked before the library is invoked. The UID

uniquely identifies each compilation instance of a library and is used to verify that other compiled

libraries and top-level programs are built against the same compilation instance. In general, when a

library or top-level program is compiled, it must be linked only with the same compilation instance

of an imported library. An example that illustrates why this is necessary is provided in Section 4.3.3.

Subsequent imports of the same library do not cause the library to be reloaded, although in our

implementation, a library can be reloaded explicitly during interactive program development.

Once a library has been loaded, the expander uses the library’s metadata to determine the library’s

exports. When a reference to an export is seen, the expander uses the metadata to determine whether

it is a compile-time export (keyword) or run-time export (variable). If it is a compile-time export,

the expander runs the library’s visit code to establish the keyword bindings. If it is a run-time

export, the expander’s action depends on the “level” of the code that is being expanded. If the code

is run-time code, the expander merely records that the library or program being expanded has an

100



4. CROSS-LIBRARY OPTIMIZATION

invoke code: <code>
    (tree constants)
invoke req: (rnrs), (tree),

Invoke
Code

name: (tree)
uid: <uid 3>

invoke code: <code>
visit code: <code>
invoke req: (rnrs)
visit req: (rnrs)

exports: make−tree, tree?,
    tree−value, tree−children

name: (tree constants)
uid: <uid 4>

invoke code: <code>
visit code: <code>

visit req: (rnrs), (tree)
invoke req: 

    t2
exports: quote−tree, t0, t1,

Invoke
Code

Invoke
Code

Figure 4.4. Library records for the (tree) and (tree constants) libraries and
a program record for our program.

invoke requirement on the library. If the code is expand-time code (i.e., code within a transformer

expression on the right-hand side of a define-syntax or other keyword binding form), the expander

records that the library or program that is being expanded has a visit requirement on the library;

and the expander also runs the library’s invoke code to establish its variable bindings and perform

its initialization.

Because programs have no exports, they do not have visit code and do not need most of the metadata

associated with a library. Thus, a program’s representation consists only of invoke requirements and

invoke code, as illustrated at the top of Figure 4.4. In our implementation, a program record is

never recorded anywhere, as the program is invoked as soon as it is loaded.

As noted in Section 4.2.1, library and top-level-program bodies are evaluated using letrec* se-

mantics. Thus, the invoke code produced by the expander for a library or top-level program is

structured as a letrec*, as illustrated below for library (tree), with used to represent the defi-

nition right-hand-side expressions, which are simply expanded versions of the corresponding source

expressions.

(letrec* ([make-tree ]

[tree? ]

[tree-value ]

[tree-children ])

(set-top-level! $make-tree make-tree)

(set-top-level! $tree? tree?)

(set-top-level! $tree-value tree-value)

(set-top-level! $tree-children tree-children))
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If the library contained initialization expressions, they would appear just after the letrec* bindings.

If the library contained unexported variable bindings, they would appear in the letrec* along with

the exported bindings.

We refer to the identifiers $make-tree, $tree?, $tree-value, and $tree-children as library glob-

als. These are the handles by which other libraries and top-level programs are able to access the

exports of a library. In our system, library globals are implemented as ordinary top-level bindings

in the sense of the Revised5 Report on Scheme (R5RS) [64]. To avoid name clashes with other

top-level bindings or with other compilation instances of the library, library globals are generated

symbols (gensyms). In fact, the list of exports is not as simple as portrayed in Figure 4.4, as the

list of exports must identify the externally visible name, e.g., make-tree, whether the identifier

is a variable or keyword and, for variables, the generated name, e.g., the gensym represented by

$make-tree.

It is possible to avoid binding the local names, e.g., make-tree, and, instead, directly set only

the global names, e.g., $make-tree. Binding local as well as global names enables the compiler to

perform the optimizations described in Section 4.1 that involve references to the library’s exported

variables within the library itself. Our compiler is not able to perform such optimizations when

they involve references to top-level variables, as it is generally impossible to prove that a top-level

variable’s value never changes, even with whole-program analysis, due to the potential use of eval.

We could introduce a new class of immutable variables to use as library globals, but this would cause

problems in our system if a compiled library is ever explicitly reloaded. It is also easier to provide

the compiler with code it already knows how to optimize than to teach it how to deal with a new

class of immutable top-level variables.

4.3. The library-group Form

With this basic understanding of how libraries work and are implemented, we are ready to look

at the library-group form. This section provides a description of the form, its usage, what the

expander should produce for the form, and how the expander does so, as well as a description of a

more portable variation of the expansion.

4.3.1. Usage. Both the (tree) and (tree constants) libraries are required when the top-level

program that uses them is run. If the program is an application to be distributed, the libraries would

have to be distributed along with the program. Because the libraries and program are compiled

separately, there is no opportunity for the compiler to optimize across the boundaries and no chance
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for the compiler to detect ahead of time whether one of the procedures exported by (tree) is used

improperly by the program. The library-group form is designed to address all of these issues.

Syntactically, a library-group form is a wrapper for a set of library forms and, optionally, a

top-level program. Here is how it might look for our simple application, with used to indicate

portions of the code that have been omitted for brevity.

(library-group

(library (tree) )

(library (tree constants) )

(import (rnrs) (tree) (tree constants))

(define tree->list

(lambda (t)

(cons (tree-value t)

(map tree->list (tree-children t)))))

(write (tree->list t0))

(write (tree->list t1))

(write (tree-value (car (tree-children t2))))

(write (tree->list (quote-tree 5 (7 9)))))

The following grammar describes the library-group syntax:

library-group −→ (library-group lglib* lgprog)
| (library-group lglib*)

lglib −→ library | (include filename)
lgprog −→ program | (include filename)

where library is an ordinary R6RS library form and program is an ordinary R6RS top-level program.

A minor but important twist is that a library or the top-level program, if any, can be replaced by

an include form that names a file that contains that library or program.7 In fact, we anticipate

that this will be done more often than not so the existing structure of a program and the libraries

it uses are not disturbed. In particular, when include is used, the existence of the library-group

form does not interfere with the normal library development process or defeat the purpose of using

libraries to organize code into separate logical units. So, our simple application might instead look

like:

(library-group

(include "tree.sls")
(include "tree/constants.sls")
(include "app.sps"))

7An included file can contain multiple libraries or even one or more libraries and a program, but we anticipate that

each included file typically contains just one library or program.
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In the general case, a library-group packages together a program and multiple libraries. There are

several interesting special cases. In the simplest case, the library-group form can be empty, with

no libraries and no program specified, in which case it is compiled into nothing. A library-group

form can also consist of just the optional top-level program form. In this case, it is simply a wrapper

for the top-level program that it contains, as library is a wrapper for libraries. Similarly, the

library-group form can consist of a single library form, in which case it is equivalent to just

the library form by itself. Finally, we can have just a list of library forms, in which case the

library-group form packages together libraries only, with no program code.

A library-group form is not required to encapsulate all of the libraries upon which members of the

group depend. For example, we could package together just (tree constants) and the top-level

program:

(library-group

(include "tree/constants.sls")
(include "app.sps"))

leaving (tree) as a separate dependency of the library group. This is important, as the source for

some libraries might be unavailable. In this case, a library group contains just those libraries for

which source is available. The final distribution can include any separate binary libraries. Conversely,

a library-group form can contain libraries upon which neither the top-level program (if present)

nor any of the other libraries explicitly depend, e.g.:

(library-group

(include "tree.sls")
(include "tree/constants.sls")
(include "foo.sls")
(include "app.sps"))

Even for whole programs packaged in this way, including an additional library might be useful if the

program might use eval to access the bindings of the library at run time. This supports the common

technique of building modules that might or might not be needed into an operating system kernel,

web server, or other program. The advantage of doing so is that the additional libraries become

part of a single package, and they benefit from cross-library error checking and optimization for the

parts of the other libraries that they use. The downside is that libraries included but never used

might still have their invoke code executed, depending on which libraries in the group are invoked.

This is the result of combining the invoke code of all the libraries in the group. The programmer

has the responsibility and opportunity to decide which libraries are profitable to include.
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Apart from the syntactic requirement that the top-level program, if present, must follow the libraries,

the library-group form also requires that each library be preceded by any other library in the group

that it imports. So, for example:

(library-group

(include "tree/constants.sls")
(include "tree.sls")
(include "app.sps"))

would be invalid, because (tree constants) imports (tree). One or more appropriate orderings

are guaranteed to exist because R6RS libraries are not permitted to have cyclic import dependencies.

The expander could determine an ordering based on the import forms (including local import

forms) that it discovers while expanding the code. We give the programmer complete control over

the ordering, however, so that the programmer can resolve dynamic dependencies that arise from

invoke-time calls to eval. Another solution would be to reorder only if necessary, but we have so

far chosen not to reorder so as to maintain complete predictability.

Libraries contained within a library-group form behave like their stand-alone equivalents, except

that the invoke code of the libraries is fused.8 Fusing the code of the enclosed libraries and top-level

program facilitates compile-time error checking and optimization across the library and program

boundaries. If compiled to a file, the form also produces a single object file. In essence, the

library-group form changes the basic unit of compilation from the library or top-level program

to the library-group form, without disturbing the enclosed (or included) libraries or top-level

programs.

A consequence of fusing the invoke code is that, the first time that a library in the group is invoked,

the libraries up to and including that library are invoked as well, along with any side effects such

invoking might entail. In cases where all of the libraries in the group would be invoked anyway, such

as when a top-level program that uses all of the libraries is run, this situation is no different from

the stand-alone behavior.

Fusing the invoke code creates a more subtle difference between grouped and stand-alone libraries.

The import dependencies of a group of R6RS libraries must form a DAG, i.e., must not involve

cycles. An exception is raised at compile time for static cyclic dependencies and at run time for

dynamic cyclic dependencies that arise via eval. When multiple libraries are grouped together, a

8Visit code is not fused as there is no advantage in doing so.
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synthetic cycle can arise, just as cycles can arise when arbitrary nodes in any DAG are combined.

We address the issue of handling dynamic cycles in more depth in the next subsection.

4.3.2. Anticipated expander output. This section contains a description of what we would like

the expander to produce for the library-group form and how the expander deals with import

relationships that require one library’s run-time exports to be available for the expansion of another

library within the group.

As noted in Section 4.2, the explicit import dependencies among libraries must form a DAG and,

as shown in Section 4.2.2, the invoke code of each library expands independently into a letrec*

expression. This leads to an expansion of library-group forms as nested letrec* forms, where

each library expands to a letrec* form that contains the libraries that follow it in the group. The

code for the top-level program is nested inside the innermost letrec* form. Libraries are nested in

the order provided by the programmer in the library-group form.

Figure 4.5 shows the result of this nesting of letrec* forms for the first library group defined

in Section 4.3.1. This is a good first cut. The references to each library global properly follow

the assignment to it, which remains properly nested within the binding for the corresponding local

variable. Unfortunately, this form does not allow the compiler to analyze and optimize across library

boundaries, as the inner parts of the nested letrec* refer to the global rather than to the local

variables.

To address this shortcoming, the code must be rewired to refer to the local variables instead, as

shown in Figure 4.6. With this change, the invoke code of the library group now forms a single

compilation unit for which cross-library error checking and optimization are possible.

Another issue remains. Loading a library group should not automatically execute the shared invoke

code. To address this issue, the code is abstracted into a separate procedure, p, called from the

invoke code stored in each of the library records. Rather than running the embedded top-level-

program code, p returns a thunk that can be used to run that code. This thunk is ignored by the

library invoke code, but it is used to run the top-level program when the library group is used as a

top-level program. The procedure p for the tree library group is shown in Figure 4.7.

Unfortunately, this expansion can lead to synthetic cycles in the dependency graph of the libraries.

Figure 4.8 shows three libraries with simple dependencies: (C) depends on (B), which in turn

depends on (A).
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(letrec* ([tree-id ]

[make-tree ]

[tree? ]

[tree-value ]

[tree-children ])

(set-top-level! $make-tree make-tree)

(set-top-level! $tree? tree?)

(set-top-level! $tree-value tree-value)

(set-top-level! $tree-children tree-children)

(letrec* ([t0 ]

[t1 ]

[t2 ])

(set-top-level! $t0 t0)

(set-top-level! $t1 t1)

(set-top-level! $t2 t2)

(letrec* ([tree->list

(lambda (t)

(cons ($tree-value t)

(map tree->list

($tree-children t))))])

(write (tree->list $t0))
(write (tree->list $t1))

(write (tree-value

(car (tree-children $t2))))
(write (tree->list (quote tree constant))))))

Figure 4.5. A nested letrec* for the library group that includes the (tree)

library, the (tree constants) library, and our program, with indicating code
that has been omitted for brevity.

We could require the programmer to include library (B) in the library group, but a more general

solution that does not require this is preferred. The central problem is that (B) needs to be run after

the invoke code for library (A) is finished and before the invoke code for library (C) has started.

This can be solved by marking library (A) as invoked once its invoke code is complete and explicitly

invoking (B) before (C)’s invoke code begins. Figure 4.10 shows what this invoke code might look

like.

This succeeds when (A) or (C) are invoked first but results in a cycle when (B) is invoked first.

Effectively, the library group invoke code should stop once (A)’s invoke code has been executed.

Wrapping each library in a lambda that takes the UID of the library being invoked accomplishes

this. When a library group is invoked, the UID informs the invoke code where to stop and returns

any nested library’s surrounding lambda as the restart point. Figure 4.11 shows this corrected

expansion of the library group that contains (A) and (C). The invoke code for an included program

would replace the innermost nested-lib and be called when #f is passed in place of the UID.
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(letrec* ([tree-id ]

[make-tree ]

[tree? ]

[tree-value ]

[tree-children ])

(set-top-level! $make-tree make-tree)

(set-top-level! $tree? tree?)

(set-top-level! $tree-value tree-value)

(set-top-level! $tree-children tree-children)

(letrec* ([t0 ]

[t1 ]

[t2 ])

(set-top-level! $t0 t0)

(set-top-level! $t1 t1)

(set-top-level! $t2 t2)

(letrec* ([tree->list

(lambda (t)

(cons (tree-value t)

(map tree->list

(tree-children t))))])

(write (tree->list t0))

(write (tree->list t1))

(write (tree-value

(car (tree-children t2))))

(write (tree->list (quote tree constant))))))

Figure 4.6. A nested letrec* for our library group that includes the (tree)

library, the (tree constants) library, and our program, with library-global

references replaced by local-variable references.

In addition to addressing the issues in the invoke code, we would also like to ensure that libraries in

the group are properly installed in the library manager. For the most part, libraries in the group can

be handled like stand-alone libraries. Metadata and visit code are installed in the library manager as

normal. The invoke code is the only twist. We would like to ensure that each library in the library

group is invoked only once, the first time it or one of the libraries below it in the group is invoked.

Thus, each library is installed with the shared invoke procedure described above. Figure 4.12 shows

how our library records are updated from Figure 4.4 to support the shared invoke code. Figure 4.13

shows this final expansion for our tree library group. If the optional program were not supplied,

the call to the p thunk at the bottom would be omitted. When the optional program is supplied, it

always executes when the library group is loaded. Programmers who wish to use the library group

separately can create two versions of the library group, one with the top-level program and one

without.
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(lambda ()

(letrec* ([tree-id ]

[make-tree ]

[tree? ]

[tree-value ]

[tree-children ])

(set-top-level! $make-tree make-tree)

(set-top-level! $tree? tree?)

(set-top-level! $tree-value tree-value)

(set-top-level! $tree-children tree-children)

(letrec* ([t0 ]

[t1 ]

[t2 ])

(set-top-level! $t0 t0)

(set-top-level! $t1 t1)

(set-top-level! $t2 t2)

(lambda ()

(letrec* ([tree->list

(lambda (t)

(cons (tree-value t)

(map tree->list

(tree-children t))))])

(write (tree->list t0))

(write (tree->list t1))

(write (tree-value

(car (tree-children t2))))

(write (tree->list

(quote tree constant))))))))

Figure 4.7. The final invoke code expansion target for the library group that
includes the (tree) library, the (tree constants) library, and our program.

(library (A)

(export x)

(import (rnrs))

(define x 5))

(library (B)

(export y)

(import (rnrs) (A))

(define y (+ x 5)))

(library (C)

(export z)

(import (rnrs) (B))

(define z (+ y 5)))

Figure 4.8. Three simple libraries, (A), (B), and (C), with simple dependencies.
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(library-group (library (A) ) (library (C) ))

Figure 4.9. A library-group form containing the (A) and (C) libraries.

(lambda ()

(letrec* ([x 5])

(set-top-level! $x x)

($mark-invoked! 'A)
($invoke-library '(B) '() 'B)

(letrec* ([z (+ y 5)])

(set-top-level! $z z)

($mark-invoked! 'C))))

Figure 4.10. Expansion of library group marking (A) as invoked and invoking (B).

(lambda (uid)

(letrec* ([x 5])

(set-top-level! $x x)

($mark-invoked! 'A)
(let ([nested-lib

(lambda (uid)

($invoke-library '(B) '() 'B)
(letrec* ([z (+ y 5)])

(set-top-level! $z z)

($mark-invoked! 'C)
(let ([nested-lib values])

(if (eq? uid 'C)
nested-lib

(nested-lib uid)))))])

(if (eq? uid 'A)
nested-lib

(nested-lib uid)))))

Figure 4.11. Final expansion for correct library group with the (A) and (C) libraries.

4.3.3. Implementation. A major challenge in producing the residual code shown in the preceding

section is that the run-time bindings for one library might be needed while compiling the code for

another library in the group. A potential simple solution to this problem is to compile and load each

library before compiling the next one in the group. This causes the library (and any similar library)

to be compiled twice, but that is not a serious concern if the compiler is fast or if the library-group

form is used only in the final stage of an application’s development to prepare the final production

version.
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shared
invoke
code

name: (tree)
uid: <uid 3>

invoke code: <code>
visit code: <code>
invoke req: (rnrs)
visit req: (rnrs)

exports: make−tree, tree?,
    tree−value, tree−children

invoke code: <code>
    (tree constants)
invoke req: (rnrs), (tree),

name: (tree constants)
uid: <uid 4>

invoke code: <code>
visit code: <code>

visit req: (rnrs), (tree)
invoke req: 

    t2
exports: quote−tree, t0, t1,

Figure 4.12. Library and program records for the library group, showing the
shared invoke code run when either the (tree) or (tree constant) library is
invoked or when the top-level program is run.

Unfortunately, this simple solution does not work because the first compilation of the library may be

fatally incompatible with the second. This can arise for many reasons, all having to do ultimately

with two facts. First, macros can change much of the nature of a library, including the internal

representations used for its data structures and even whether an export is defined as a keyword or

as a variable. Second, because macros can take advantage of the full power of the language, the

transformations that they perform can be affected by the same things that affect run-time code,

including, for example, information in a configuration file, state stored elsewhere in the file system

by earlier uses of the macro, or even a random number generator.

For example, via a macro that flips a coin, e.g., checks to see whether a random-number generator

produces an even or odd answer, the (tree) library might in one case represent trees as tagged lists

and in another as tagged vectors. If this occurs, the constant trees defined in the (tree constants)

library and in the top-level program would be incompatible with the accessors used at run time.

While this is a contrived and whimsical example, such things can happen, and we are obligated to

handle them properly to maintain consistent semantics between separately compiled libraries and

libraries compiled as part of a library group.

111



4. CROSS-LIBRARY OPTIMIZATION

(let ([p (let ([proc (lambda (uid)

(letrec* ([tree-id ]

[make-tree ]

[tree? ]

[tree-value ]

[tree-children ])

(set-top-level! $make-tree make-tree)

($mark-invoked! 'tree)
(let ([nested-lib (lambda (uid)

(letrec* ([t0 ]

[t1 ]

[t2 ])

(set-top-level! $t0 t0)

($mark-invoked! 'constants)
(let ([nested-lib (lambda (uid)

($invoke-library
'(tree constants)

'() 'constants)
($invoke-library
'(tree) '() 'tree)

(letrec*

([tree->list ])

))])

(if (eq? uid 'constants)
nested-lib

(nested-lib uid)))))])

(if (eq? uid 'tree)
nested-lib

(nested-lib uid)))))])

(lambda (uid) (set! proc (proc uid))))])

($install-library '(tree) '() 'tree
'(#[libreq (rnrs) (6) $rnrs]) '() '()

void (lambda () (p 'tree)))
($install-library '(tree constants) '() 'constants

'(#[libreq (tree) () tree]

#[libreq (rnrs) (6) $rnrs])
'(#[libreq (tree) () tree]) '()

(lambda ()

(set-top-level! $quote-tree ))

(lambda () (p 'constants)))
(p #f))

Figure 4.13. Final expansion of the library group containing the (tree) library,
the (tree constants) library, and our program.

On the other hand, we cannot entirely avoid compiling the code for a library whose run-time exports

are needed to compile another part of the group if we are to produce the run-time code that we hope

to produce. The solution is for the expander to expand the code for each library only once, as it is
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seen, as though the library were compiled separately from all of the other libraries. If the library

must be invoked to compile another of the libraries or the top-level program, the expander runs the

invoke code through the rest of the compiler and evaluates the result. Once all of the libraries and

the top-level program have been expanded, the expander can merge and rewrite the expanded code

for all of the libraries to produce the code described in the preceding section, and then allow the

resulting code to be run through the rest of the compiler. Although some of the libraries might be

put through the rest of the compiler more than once, each is expanded exactly once. Assuming that

the rest of the compiler is deterministic, this prevents the types of problems that arise if a library is

expanded more than once.

To perform this rewiring, the library must be abstracted slightly so that a mapping from the exported

identifiers to the lexical variables can be maintained. With this information, the code can be rewired

to produce the code in Figure 4.13.

Because a library’s invoke code might be needed to expand another library in the group, libraries

in the group are installed as stand-alone libraries during expansion and are then replaced by the

library group for run time. This means that the invoke code for a library might be run twice in the

same Scheme session, once during expansion and once during execution. Multiple invocations of a

library are permitted by the R6RS. Indeed, some implementations always invoke a library one or

more times at compile time and again at run time to prevent state setup at compile time from being

used at run time.

This implementation requires the expander to walk through expanded code and to convert library-

global references into lexical-variable references. Expanded code is typically in some compiler-

dependent form that the expander would not normally need to traverse, and we might want a more

portable solution to this problem. One alternative to the code walk is to wrap the expanded library

in a lambda expression, with formal parameters for each library global referenced within the library.

4.4. Automatic Cross-Library Optimization

The library-group form provides optimizations akin to whole-program optimization, bringing to-

gether more source code upon which the compiler can operate. Even when the library-group form

is not used, however, we would like to provide some of the benefits of cross-library optimization.

Naively, one approach to cross-library optimization would be to include a representation of the source

code for the library so that this source code can be incorporated when the library is imported and

would work similarly to that of libraries combined with the library-group form. The challenge in
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this approach is that any shared-mutable state setup by the library cannot be duplicated without

changing the semantics that results from a library being imported into the same session through two

different libraries. The other downside of this approach is that potentially large pieces of source code

that would not normally be copied by the source optimizer, which is set up to limit code growth

due to inlining, would be stored but effectively never used, needlessly increasing the size of library

binaries.

Instead, our approach attaches a constant or a representation of the source code for a procedure to

an identifier only when the constant is copyable or the procedure inlinable. A constant is considered

copyable when copying it will not change the semantics of a program that uses the constant. The

driving decider for this is how eq? handles the constant. A structured constant, such as a vector

or a pair, cannot be copied because the constant must be eq? to itself, and copying the constant

would break this property. A procedure is considered inlinable when it contains no free variables,

only copyable constants, and fits within the score limit when the library is compiled. The score

limit controls the amount of copying that the source inliner will perform when inlining occurs. It is

normally based on the size of the code after inlining but must be based on the size before inlining

here, as we are operating without knowledge of the call site. Limiting inlinable procedures to those

without free variables both avoids potential problems with referencing an identifier that is not bound

in the context where the source is copied and any copying of shared mutable state. At this point

in the compiler, variables are specifically local variables, so references to primitives or globals are

not considered free. The one exception to this is references to imported library identifiers. Allowing

references to library identifiers would require that library dependencies be updated in libraries that

import the one being compiled. There is currently no facility for doing this.

4.4.1. Implementation. The implementation of automatic cross-library optimization requires that

both the expander and the source optimizer be aware of the optimization. As described in Sec-

tion 4.2.2, definitions in a library are bound by a letrec* form, and exported identifiers are then

set in the top-level environment to the value of the corresponding local variable. To enable automatic

cross-library optimization, the internal representation of a library global is extended to contain a

mutable field that stores the optimization information for the identifier. During expansion of the

library, this field is set to #f, which indicates that no optimization information is available. The

expander also generates a node in the internal representation of the output of the library to indicate

to the source optimizer that the contained expression is related to the given library identifier. This
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breadcrumb is the only piece of information left about the library after the expander is finished

expanding the library.

When the source optimizer encounters a cross-library optimization node, it first performs source

optimization on the expression contained in the node and then inspects the result. If the result

is a copyable constant or an inlinable procedure, the optimization field of the associated library

export is modified to contain the internal (record) representation of the expression. This sets up the

cross-library optimization, as the internal representation of a library global is written to the binary

output file for use when the library is imported.

When a library is imported, the expander is responsible for completing the cross-library optimization

by replacing references to library globals with the optimization information, when it is available.

Performing the replacement in the expander is convenient and allows library dependencies to be

more tightly computed, as there is no dependence on the library if all of the library identifiers used

from the library are optimized away. When a library global is not in call position in the library

source but is moved into call or test position through inlining, the source optimizer replaces the

library global with the optimization information. This allows inlining that would not be possible

using only the expander but does not allow library dependencies, which are fixed by the time source

optimization occurs, to be dropped.

The implicit cross-library optimization is inherently limited. Constructed constants cannot be copied

because, if any two libraries with the same constructed constant were imported, the constants would

no longer be eq? to each other. Only procedure expressions exported from the library that contain

no free variables and no references to library globals are eligible for external inlining, as they will

be lifted out of their lexical context and do not carry the set of dependencies needed for the library

globals. These procedures are further limited by the size of the expression, as the inlining process

would normally count only the size of the procedure after inlining had occurred. This might be

allowed to be much larger if the argument expressions to the procedure are large.

4.5. Empirical Evaluation

One of the goals of the library-group form is to enable cross-library optimizations to occur. Opti-

mizations such as procedure inlining are known to result in significant performance benefits [90]. By

using the library-group form, a programmer enables a compiler that supports these optimizations

to apply them across library boundaries. This section presents a characterization of the types of
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programs that we expect to show performance benefits. Even when there are no performance ben-

efits, programs still benefit from the single binary output file and cross-library compile-time error

checking.

Even when the library-group form is not used, the automatic cross-library optimizations enable

some procedure inlining and constant folding. This does not have the benefit of creating a single

binary; however, the optimization occurs without any intervention from the programmer. Used

together, optimizations can occur across library group boundaries as well.

In general, programs and libraries with many cross-library procedure calls are expected to benefit

the most. As an example, imagine a compiler where each pass is called only once and is defined in its

own library. Combining these libraries into a library group is unlikely to yield performance benefits,

as the number of cross-library procedure calls is relatively small. However, if the passes of this

compiler use a common record structure to represent code and a library of helpers for decomposing

and reconstructing these records, combining the compiler pass libraries and the helper library into

a single library group can benefit compiler performance significantly.

To illustrate when performance gains are expected, we present two example libraries, both written

by Eduardo Cavazos and tested in Chez Scheme Version 8.9.5 [33]. We present only two tests here,

because while the library form has been successful for providing libraries such as the Scheme SRFIs,

not many full applications or benchmarks have been developed that make use of the library form.

The first program [24] implements a set of tests for the “Mathematical Pseudo Language” [27,28]

(MPL), a symbolic math library. The second uses a library for indexable sequences [23] to implement

a matrix multiply algorithm [34].

Many small libraries comprise the MPL library. Each basic mathematical function, such as +, /,

and cos, uses pattern matching to decompose the mathematical expression passed to it to select

an appropriate simplification, if one exists. The pattern matcher, provided by another library [42],

avoids cross-library calls, as it is implemented entirely as a macro. The mathematical libraries,

however, make use of operations defined as procedures in other libraries, which cannot be inlined

across library boundaries without one of the optimizations described in this chapter. The test library

also makes many cross-library calls to both the math libraries and the testing support library. Thus,

there are many cross-library calls that can be eliminated by using the library-group form. Using

the library-group form results in a 24% speed-up over the separately compiled version, with

automatic cross-library optimization disabled. Because many of the mathematical operations are

also inlinable procedures, the automatic cross-library optimization also optimizes the MPL tests
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well. When the automatic cross-library optimizations are enabled, it results in a 24% speed-up over

the version without the automatic cross-library optimization. Using the cross-library optimization

and the library-group form together does not result in further improvements.

The matrix-multiply example uses a vector-for-each form that provides the loop index to its

procedure argument, from the indexable-sequence library. The library abstracts standard data

structure iteration functions that provide constructors, accessors, and a length function. The op-

erations it creates, however, are implemented as macros, so operations defined by these libraries

are expanded into basic operations at their use sites. The matrix-multiply function makes three

nested calls to vector-for-each-with-index, which expand in the matrix multiple library into

inline loops. A test program calls matrix-multiply on 50 x 50, 100 x 100, and 500 x 500 matrices.

The calls to the multiply operation are cross-library calls, but the majority of the work of performing

matrix multiple occurs entirely in the matrix multiple library, so we do not expect much benefit from

cross-library optimizations. Thus, compiling the program with the library-group form showed only

a negligible performance gain over the version with automatic cross-library optimization disabled.

Enabling the automatic cross-library optimization also does not improve the performance.

In both of our example programs, the difference in time between compiling the program as a set

of individual libraries with implicit cross-library optimization enabled and as a single library group

is negligible. Despite this, it is possible to construct a contrived example where the implicit cross-

library optimization is not applicable, but the library-group form is.

4.6. Related Work

Packaging code into a single distributable is not a new challenge, and previous dialects of Scheme

needed a way to provide a single binary for distribution. Our system, PLT Racket, and others provide

mechanisms for packaging up and distributing collections of compiled libraries and programs. These

are packaging facilities only and do not provide the cross-library optimization or compile-time error

checking provided by the library-group form.

Ikarus [51] uses Waddell’s source optimizer [89, 90] to perform some of the same interprocedural

optimizations as performed in our system. In both systems, these optimizations previously occurred

only within a single compilation unit, e.g., a top-level expression or library. The library-group form

allows both to perform cross-library and even whole-program optimization. The Stalin [82] Scheme

compiler supports aggressive whole-program optimization when the whole program is presented to

it, but it does not support R6RS libraries or anything similar. If at some point it does support
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R6RS libraries, the library-group form would be a useful addition. MIT Scheme [58] allows the

programmer to mark a procedure inlinable, and inlining of procedures so marked occurs across file

boundaries. MIT Scheme does not support R6RS libraries, and inlining, while important, is only one

of many optimizations enabled when the whole program is made available to the compiler. Thus,

as with Stalin, if support for R6RS libraries were added to MIT Scheme, the library-group form

would be a useful addition.

Although the library-group mechanism is orthogonal to the issue of explicit versus implicit phasing,

the technique we use to make a library’s run-time bindings available both independently at compile

time and as part of the combined library-group code is similar to techniques Flatt uses to support

separation of phases [45].

Outside the Scheme community, several other languages, such as Dylan, ML, Haskell, and C++,

make use of library or module systems and provide some form of compile-time abstraction facility.

Dylan is the closest to Scheme and is latently typed with a rewrite-based macro system [77]. Dylan

provides both libraries and modules, where libraries are the basic compilation unit, and modules are

used to control scope. The Dylan community also recognizes the benefits of cross-library inlining,

and a set of common extensions allows programmers to specify when and how functions should

be inlined. By default, the compiler performs intra-library inlining, but may-inline and inline

specify that the compiler may try to perform inter-library inlining or that a function should always

be inlined, even across library boundaries.

The Dylan standard does not include procedural macros, so run-time code from a Dylan library does

not need to be made available at compile time. Nevertheless, such a facility is planned [44] and at

least one implementation exists [13]. When this feature is added to existing Dylan implementations,

an approach similar to that taken by the library-group might be needed to enable cross-library

optimization.

ML functors provide a system for parameterizing modules across different type signatures, where the

types needed at compile time are analogous to Scheme macros. The MLton compiler [95] performs

whole-program compilation for ML programs and uses compile-time type information to specialize

code in a functor. Because this type information is not dependent on the run-time code of other

modules, it does not require a module’s run-time code to be available at compile time. If the type

system were extended to support dependent types, however, some of the same techniques used in the

library-group form could be needed. Additionally, MetaML [85] adds staging to ML, similar to

the phasing in Scheme macros. Because MetaML does not allow run-time procedures to be called in
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its templates, however, it does not have the same need to make a module’s run-time code available

at compile time.

The Glasgow Haskell Compiler (GHC) [1] provides support for cross-module inlining [87] as well as

for compile-time meta-programming through Template Haskell [79]. Thus, GHC achieves some of

the performance benefits of the library-group form in a language with similar challenges, without

the use of an explicit library-group form. A Haskell version of the library-group form would

still be useful for recognizing when an inlining candidate is singly referenced and for enabling other

interprocedural optimizations. It likely would be simpler to implement due to the lack of state at

compile time.

The template system of C++ [3, 4] provides a Turing-complete, compile-time abstraction facility,

similar to the procedural macros found in Scheme. The language of C++ templates is distinct from

C++, and run-time C++ code cannot be used during template expansion. If the template language

were extended to allow C++ templates to call arbitrary C++ code, compilation might need to be

handled similarly to how the library-group form is handled.

Another approach to cross-library optimizations is link-time optimization of object code. Several dif-

ferent approaches to this technique exist and are beginning to be used in compilers such as GCC [70]

and compiler frameworks such as LLVM [66]. Instead of performing procedure inlining at the source

level, these optimizers take object code produced by the compiler and perform optimization when

the objects are linked. The GOld [15] link-time optimizer applies similar techniques to optimize

cross-module calls when compiling Gambit-C Scheme code into C. Our decision to combine libraries

at the source level is motivated by the fact that our system and others already provide effective

source optimizers that can be leveraged to perform cross-library optimization.

4.7. Future Work

The library-group form is designed to allow programmers the greatest possible flexibility in de-

termining which libraries to include in a library group and the order in which they should be

invoked. This level of control is not always necessary, and we envision a higher-level interface to

the library-group form that would automatically group a program with its required libraries and

automatically determine an appropriate invocation order based only on static dependencies.

The library-group form ensures that all exports for libraries in the library group are available

outside the library group. In cases where a library is not needed outside the library group, we would

like to allow their exports to be dropped so that the compiler can eliminate unused code and data.
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This would help reduce program bloat in cases where a large utility library is included in a program

and only a small part of it is needed. We envision an extended version of the library-group form

that specifies a list of libraries that should not be exported. The compiler should still, at least

optionally, register unexported libraries to raise an exception if they are used outside the library

group.

Our current implementation of the library-group form can lead to libraries being invoked that

are not required to be invoked, based on the ordering of libraries in the group. It is possible to

invoke libraries only as they are required by using a more intricate layout of library bindings, similar

to the way that letrec and letrec* are currently handled [56]. This expansion would separate

side-effect-free expressions in a library from those with side effects, running the effectful expressions

only when required. This approach would require that other parts of the compiler be made aware

of the library-group form, as the expander does not have all the information it needs to handle

this effectively.

4.8. Conclusion

The library-group form builds on the benefits of R6RS libraries and top-level programs, which

allow a single compilation unit to be created from a group of libraries and an optional top-level

program. Packaging the run-time code in a single compilation unit and wiring the code together so

that each part of the library group references the exports of the others via local variables allow the

compiler to perform cross-library optimization and extend compile-time error checking across library

boundaries. It also allows the creation of a single output binary. The implementation is designed to

deliver these benefits without requiring the compiler to do any more than it already does. In this

way, it represents a non-invasive feature that can be more easily incorporated into existing Scheme

compilers.

In Scheme systems where the library-group form does not exist or where a programmer has

chosen not to use it, the automatic cross-library optimization can help reap some of the benefits of

the library-group form. In particular, automatic cross-library optimization allows Scheme record

operations to be optimized across library boundaries. This removes the downside of using records

with libraries. Simple operations, such as those in the MPL library, also benefit from this form of

optimization.

While this work was developed in the context of Scheme, we expect that the techniques described

in this chapter will become useful as other languages adopt procedural macro systems. The PLOT
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language [69], which shares an ALGOL-like syntax with Dylan already provides a full procedural

macro system, and a similar system has been proposed for Dylan [44]. The techniques described in

this chapter might also be useful for languages with dependent-type systems that allow types to be

expressed in the full source language or template meta-programming systems that allow templates

to be defined through the use of the full source language.
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CHAPTER 5

Closure Optimization

5.1. Introduction

First-class procedures, i.e., indefinite extent procedural objects that retain the values of lexically

scoped variables, were incorporated into the design of the Scheme programming language in 1975

and, within a few years, started appearing in functional languages such as ML. It has taken many

years, but they are fast becoming commonplace, with their inclusion in contemporary languages

such as JavaScript and newer versions of other languages such as C# and Perl.

First-class procedures are typically represented at run time as closures. A closure is a first-class

object that encapsulates some representation of a procedure’s code (e.g., the starting address of its

machine code), along with some representation of the lexical environment. In 1983, Cardelli [22]

introduced the notion of flat closures. A flat closure resembles a vector, with a code slot plus one slot

for each free variable.9 The code slot holds a code pointer, which might be the address of a block of

machine code that implements the procedure or some other representation of code, such as byte code

in a virtual machine. Each free-variable slot holds the value of one free variable. Because the same

variable’s value might be stored simultaneously in one or more closures and in the original location

in a register or stack, mutable variables are not directly supported by the flat-closure model. In

1987, Dybvig [30] addressed this for languages, such as Scheme, with mutable variables by adding

a separate assignment conversion step that converts the locations of assigned variables (but not

unassigned variables) into explicit heap-allocated boxes, thereby avoiding problems with duplication

of values.

Flat closures have the useful property that each free variable (or location, for assigned variables)

is accessible with a single indirect. This compares favorably with any mechanism that requires

traversal of a nested-environment structure. The cost of creating a flat closure is proportional to the

number of free variables, which is often small. When not, the cost is more than compensated for by

the lower cost of free-variable reference, in the likely case that each free variable is accessed at least

9In this context, free variables are those references within the body of a procedure but are not bound within the

procedure.
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once and possibly many times. Flat closures also hold onto no more of the environment than the

procedure might require and, thus, are “safe for space” [78]. This is important because it allows the

storage manager to reclaim storage from the values of variables that are visible in the environment

but not used by the procedure.

This chapter provides a description of a set of optimizations of the flat-closure model that reduce

closure-creation costs and eliminate memory operations without losing the useful features of flat

closures. It also presents, in detail, an algorithm that performs the optimizations and shows that

the optimizations reduce run-time closure-creation and free-variable access overhead on a set of

standard benchmarks by over 50%. These optimizations never do any harm, i.e., they never add

allocation overhead or memory operations relative to a naive implementation of flat closures. Thus, a

programmer can count on at least the performance of the straight flat-closure model and, most likely,

better. The algorithm adds a small amount of compile-time overhead during closure conversion, but

because it produces less code, the overhead is more than made up for by the reduced overhead in

later passes of the compiler.

A key contribution of this work is the detailed description of the optimizations and their relationships.

While a few of the optimizations have been performed by our compiler since 1992, descriptions of

them have never been published. Various closure optimizations have been described by others [10,

29, 46, 62, 65, 76, 78, 84], but most of the optimizations described here have not been described

previously in the literature, and many are likely novel. A second key contribution is the algorithm

to implement them, which also is novel.

The remainder of this chapter is organized as follows. Section 5.2 provides a description of the

optimizations, and Section 5.3 provides an algorithm that implements them. Section 5.4 presents

an empirical analysis that demonstrates the effectiveness of the optimizations. Section 5.5 includes

related work, and Section 5.6 presents our conclusions.

5.2. The Optimizations

The closure optimizations described in this section collectively act to eliminate some closures and

reduce the sizes of others. When closures are eliminated in one section of the program, the opti-

mizations can cascade to further optimizations that allow other closures to be eliminated or reduced

in size. They also sometimes result in the selection of alternate representations that occupy fewer

memory locations. In most cases, they also reduce the number of indirects required to access free

variables. The remainder of this section presents each optimization in turn, grouped by direct effect:
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• avoiding unnecessary closures (Section 5.2.1),

• eliminating unnecessary free variables (Section 5.2.2), and

• sharing closures (Section 5.2.3).

A single algorithm that implements all of the optimizations described in this section is provided in

Section 5.3.

5.2.1. Avoiding unnecessary closures. A flat closure contains a code pointer and a set of free-

variable values. Depending on the number of free variables and whether the code pointer is used,

we can sometimes eliminate the closure, sometimes allocate it statically, and sometimes represent it

more efficiently. We consider first the case of well-known procedures.

Case 1: Well-known procedures

A procedure is known at a call site if the call site provably invokes that procedure’s λ-expression

and only that λ-expression. A well-known procedure is one whose value is never used except at call

sites where it is known. The code pointer of a closure for a well-known procedure need never be

used because, at each point where the procedure is called, the call can jump directly to the entry

point for the procedure via a direct-call label associated with the λ-expression.

Depending on the number of free variables, we can take advantage of this as follows.

Case 1a: Well-known with no free variables

If the procedure has no free variables, and its code pointer is never used, the closure itself is entirely

useless and can be eliminated.

Case 1b: Well-known with one free variable x

If the procedure has one free variable, and its code pointer is never used, the only useful part of the

closure is the free variable. In this case, the closure can be replaced with the free variable everywhere

that it is used.

Case 1c: Well-known with two free variables x and y

If the procedure has two free variables, and its code pointer is never used, it contains only two useful

pieces of information, the values of the two free variables. In this case, the closure can be replaced

with a pair. In our implementation, pairs occupy just two words of memory, while a closure with

two free variables occupies three words.

Case 1d: Well-known with three or more free variables x ...
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If the procedure has three or more free variables, but its code pointer is never used, we can choose

to represent it as a closure or as a vector. The size in both cases is the same: one word for each

free variable plus one additional word. The additional word for the closure is a code pointer, while

the additional word for the vector is an integer length. This choice is a virtual toss-up, although

storing a small constant length is slightly cheaper than storing a full-word code pointer, especially

on 64-bit machines. We choose the vector representation for this reason and because it helps us

share closures, as described in Section 5.2.3.

We now turn to the case where the procedure is not well known.

Case 2: Not-well-known procedures

In this case, the procedure’s value might be used at a call site where the procedure is not known.

That call site must jump indirectly through the closure’s code pointer, as it does not know the

direct-call label or labels of the closures that it might call. In this case, the code pointer is needed,

and a closure must be allocated.

We consider two subcases:

Case 2a: Not well-known with no free variables

In this case, the closure is the same each time the procedure’s λ-expression is evaluated, as it contains

only a static code pointer. The closure can thus be allocated statically and treated as a constant.

Case 2b: Not well-known with one or more free variables x ...

In this case, a closure must be created at run time.

5.2.2. Eliminating unnecessary free variables. On the surface, it seems that a closure needs

to hold the values of all of its free variables. After all, if a variable occurs free in a procedure’s

λ-expression, it might be referenced, barring dead code that should have been eliminated by some

earlier pass of the compiler. Several cases do arise, however, in which a free variable is not needed.

Case 1: Unreferenced free variables

Under normal circumstances, a variable cannot be free in a λ-expression if it is not referenced there

(or assigned, prior to assignment conversion). This case can arise after free-variable analysis has

been performed, however, by the elimination of a closure under Case 1a of Section 5.2.1. Call sites

that originally passed the closure to the procedure do not do so when the closure is eliminated,
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and because no other references to a well-known procedure’s name appear in the code, the variable

should be removed from any closures in which it appears.

Case 2: Global variables

The locations of global variables, i.e., variables whose locations are fixed for an entire program run,

need not be included in a closure, as the address of the location can be incorporated directly in the

code stream, with appropriate support from the linker.

Case 3: Variables bound to constants

If a variable is bound to a constant, references to it can be replaced with the constant (via constant

propagation), and the binding can be eliminated, e.g.:

(let ([x 3])

(letrec ([f (lambda () x)])

))

can be rewritten as:

(letrec ([f (lambda () 3)])

)

If this transformation is performed in concert with the other optimizations described in this section,

a variable bound to a constant can be removed from the sets of free variables in which it appears.

Our compiler performs this sort of transformation prior to closure optimization, but this situation can

also arise when a closure is allocated statically and treated as a constant by Case 2a of Section 5.2.1.

For structured data, such as closures, care should also be taken to avoid replicating the actual

structure when the variable is referenced at multiple points within its scope. Downstream passes of

our compiler guarantee that this is the case, in cooperation with the linker, effectively turning the

closure into a constant.

Case 4: Aliases

A similar transformation can take place when a variable x is bound directly to the value of another

variable y , e.g.:

(let ([x y])

(letrec ([f (lambda () x)])

))

can be rewritten (via copy propagation) as:
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(letrec ([f (lambda () y)])

)

This transformation would not necessarily be valid if either x or y were assigned, but we assume

that assignment conversion has already been performed.

In cases where both x and y are free within the same λ-expression, we can remove x and leave just

y . For example, x and y both appear free in the λ-expression bound to f :

(let ([x y])

(letrec ([f (lambda () (x y))])

))

Yet, if references to x are replaced with references to y , only y should be retained in the set of free

variables.

Again, our compiler eliminates aliases such as this in a pass that runs before closure optimization.

Nevertheless, this situation can arise as a result of Case 1b of Section 5.2.1, in which a closure for a

well-known procedure with one free variable is replaced by its single free variable. It can also arise

as the result of closure sharing, as discussed in Section 5.2.3

Case 5: Self-references

A procedure that recurs directly to itself through the name of the procedure has its own name as a

free variable. For example, the λ-expression in the code for f below has f as a free variable:

(define append

(lambda (ls1 ls2)

(letrec ([f (lambda (ls1)

(if (null? ls1)

ls2

(cons (car ls1)

(f (cdr ls1) ls2))))])

(f ls1))))

From the illustration of the closure in Figure 5.1, it is clear that this self-reference is unnecessary.

If we already have f ’s closure in hand, there is no need to follow the indirect to find it. In general,

a link at a known offset from the front of any data structure that always points back to itself is

unnecessary and can be eliminated. Thus, a procedure’s name need not appear in its own list of free

variables.

Case 6: Unnecessary mutual references
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f . . .fv fv1 nf: Code

f: Code . . .fv fv1 n

Figure 5.1. Function f with a self-reference in its closure.

A similar situation arises when two or more procedures are mutually recursive and have only the

variables of one or more of the others as free variables. For example, in:

(letrec ([even? (lambda (x)

(or (= x 0)

(odd? (- x 1))))]

[odd? (lambda (x) (not (even? x)))])

)

even? has odd? as a free variable only to provide odd? its closure and vice versa. Neither is necessary.

This situation is illustrated in Figure 5.2.

Code

Code

even?:

odd?:

odd?

even?

Code

Code

even?:

odd?:

Figure 5.2. Mutual references for the even? and odd? closures.

In contrast, in the modified version below:

(lambda (z)

(letrec ([even? (lambda (x)

(or (= x z)

(odd? (- x 1))))]

[odd? (lambda (x) (not (even? x)))])

))
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z is free in even?, so even? does need its closure to hold z, and odd? needs its closure to hold even?.

This situation is illustrated in Figure 5.3.

Code

Code

even?:

odd?:

odd?

even?

z

Figure 5.3. Mutual references for the even? and odd? closures, with z free in even?.

5.2.3. Sharing closures. If a set of closures cannot be eliminated, they possibly can be shared.

For example, in the second even? and odd? example of Section 5.2.2, we could use a single closure

for both even? and odd?. The combined closure would have just one free variable, z, as the pointer

from odd? to even? would become a self-reference and, thus, be unnecessary. Further, when even?

calls odd?, it would just pass along the shared closure rather than indirecting its own to obtain

odd?’s closure. The same savings would occur when odd? calls even?.

There are three challenges, however. First, our representation of closures does not have space for

multiple code pointers. This can be addressed with support from the storage manager, although not

without some difficulty.

Second, more subtly, if two procedures have different lifetimes, some of the free-variable values might

be retained longer than they should be. In other words, the representation is no longer “safe for

space” [78]. This problem does not arise if either (a) the procedures have the same lifetime, or

(b) the set of free variables (after removing mutually recursive references) is the same for all of the

procedures.

Third, even more subtly, if two procedures have different lifetimes, but the same set of free variables,

and one or more are not-well-known, one of the code pointers might be retained longer than necessary.

In systems where all code is static, this is not a problem, but our compiler generates code on the

fly, e.g., when the eval procedure is used; and anything that can be dynamically allocated must be

subject to garbage collection, including code. This is not a problem when each of the procedures

is well-known, assuming that we choose the vector representation over the closure representation in

Case 1d of Section 5.2.1.
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Thus, we can share closures in the following two cases:

Case 1: Same lifetime, single code pointer

Without extending our existing representation to handle multiple code pointers, we can use one

closure for any set of procedures that have the same lifetime, as long as, at most, one of them

requires its code pointer. Proving that two or more procedures have the same lifetime is difficult

in general, but it is always the case for sets of procedures where a call from one can lead directly

or indirectly to a call to each of the others, i.e., sets that are strongly connected [86] in a graph of

bindings linked by free-variable relationships.

Case 2: Same free variables, no code pointers

If a set of well-known procedures all have the same set of free variables, the procedures can share the

same closure, even when they are not part of the same strongly connected group of procedures. No

harm is done if one outlasts the others, as the shared closure directly retains no more than what each

of the original closures would have indirectly retained. In determining this, we can ignore variables

that name members of the set, as these will be eliminated as self-references in the shared closure.

In either case, sharing can result in aliases that can lead to reductions in the sizes of other closures

(Case 4 of Section 5.2.2).

5.2.4. Example. Consider the letrec expression in the following program:

(lambda (x)

(letrec ([f (lambda (a) (a x))]

[g (lambda () (f (h x)))]

[h (lambda (z) (g))]

[q (lambda (y) (+ (length y) 1))])

(q (g))))

As the first step in the optimization process, we identify the free variables for the procedures defined

in the letrec: x is free in f ; x , f , and h are free in g ; and g is free in h. q contains no free variables.

We do not consider + or length to be free in q , as the locations of global variables are stored directly

in the code stream, as discussed in Case 2 of Section 5.2.2. Additionally, we note that f , g , h, and

q are all well-known.

Next, we partition the bindings into strongly connected components, producing one letrec expres-

sion for each [56,93]. g and h are mutually recursive, and, thus, must be bound by the same letrec

expression, while f and q each get their own. Since f appears in g , the letrec that binds f must

appear outside the letrec that binds g and h. Since q neither depends on nor appears in the other
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procedures, we can place its letrec expression anywhere among the others. We arbitrarily choose

to make it the outermost letrec.

After these partitions we have the following program:

(lambda (x)

(letrec ([q (lambda (y) (+ (length y) 1))])

(letrec ([f (lambda (a) (a x))])

(letrec ([g (lambda () (f (h x)))]

[h (lambda (z) (g))])

(q (g))))))

We can now begin the process of applying optimizations. Since q is both well-known and has no

free variables, its closure can be completely eliminated (Case 1a of Section 5.2.1). f is a well-known

procedure and has only one free variable, x , so its closure is just x (Case 1b of Section 5.2.1). g

and h are mutually recursive, so it is tempting to eliminate both closures, as described by Case 6 of

Section 5.2.2. However, g still has x as a free variable, and, therefore, needs its closure. h also needs

its closure so that it can hold g . Because g and h are well-known and are part of the same strongly

connected component, they can share a closure (Case 1 of Section 5.2.3). Additionally, since f ’s

closure has been replaced by x , there is only a single free variable, x , so the closures for g and h are

also just x (Case 1b of Section 5.2.1). If another variable, y , were free in one of g or h, the result

would be a shared closure represented by a pair of x and y (Case 1c of Section 5.2.1). If, further, g

were not-well-known, a shared closure for g and h would have to be allocated with the code pointer

for g and x and y as its free variables (Case 1 of Section 5.2.3).

5.3. The Algorithm

We now turn to a description of an algorithm that can be used to perform the optimizations described

above. To simplify the presentation, we describe the algorithm by using the small core language

defined in Figure 5.4. The grammar enforces a few preconditions on the input:

• variables are not assigned,

• letrec expressions are pure, i.e., bind (unassigned) variables to λ-expressions, and

• λ-expressions appear nowhere else,

The first precondition can be arranged via standard assignment conversion [30,65], while the second

requires some form of letrec purification [56,93]. The third precondition can be arranged trivially

via the following local transformation on λ-expressions.
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(lambda (x) e)→ (letrec ([f ′ (lambda (x) e)]) f ′)

where f ′ is a fresh variable.

The algorithm requires one more precondition not enforced by the grammar:

• variables are uniquely named.

This precondition can be arranged via a simple alpha renaming.

In broad strokes, the closure optimization algorithm is as follows, with details provided in the

referenced sections:

(1) Gather information about the input program, including the free variables of each λ-expression

and whether each λ-expression is well-known (Section 5.3.1).

(2) Partition the bindings of each input letrec expression into separate sets of bindings known to

have the same lifetimes, i.e., sets of strongly connected bindings (Section 5.3.2).

(3) When one or more bindings of a strongly connected set of bindings is well-known (i.e., they are

bindings for well-known procedures), decide which should share a single closure (Section 5.3.3).

(4) Determine the required free variables for each closure, leaving out those that are unnecessary

(Section 5.3.4).

(5) Select the appropriate representation for each closure and whether it can share space with a

closure from some outer, strongly connected set of bindings (Section 5.3.5).

(6) Rebuild the code based on this selection (Section 5.3.6).

The final output of the algorithm is in the intermediate language shown in Figure 5.9 on page 134.

5.3.1. Gathering information. Before it can proceed, the main part of the algorithm requires a

few pieces of information to be teased out of the program via static analysis:

• each λ-expression’s free variables,

• call sites where the callee is known, and

• whether each λ-expression is well-known.

The set of free variables can be determined for each λ-expression via a straightforward recursive

scan of the input program in which two values are returned at each step: (1) a new expression that

records free variables at each λ-expression, and (2) the set of variables free in the expression. The

base cases are variables and constants. The set of variables free in a variable reference includes just

the variable itself, while the set of variables free in a constant is empty. The set of variables free

in a lambda, let, or letrec is the union of the sets of variables free in each subform minus those

132



5. CLOSURE OPTIMIZATION

bound by the form.10 The set of variables free in a call or primitive application is the union of the

sets of variables free in the subforms. The result of this scan is the intermediate language shown in

Figure 5.5, which differs from the core language only in the appearance of a free-variable set in the

syntax for lambda. The free-variable set, fvs, is the set of variables free in the lambda.

Determining the known-call sites and whether each λ-expression is well-known is a bit trickier. The

desired result is the intermediate language shown in Figure 5.6, which differs from the preceding

language in the addition of a label, l, and a well-known flag, wk, to each lambda, along with the

addition of a label or bottom, denoted by l?, to each call. Each label represents the entry point of

one λ-expression. A label is recorded in a call only if we can prove that the corresponding lambda

is the only one ever called (directly) by that call. Similarly, the well-known flag, wk, on a lambda is

true only if we can prove that its name is used only at call sites where it is known, i.e., at call sites

where the label is recorded.

A completely accurate determination is generally impossible, but it is straightforward to compute a

conservative approximation efficiently as follows. First, create an environment that maps variables

to labels and a separate store that maps variables to well-known flags, both initially empty. Then,

for each letrec, create a fresh label for each of its λ-expressions; mark each variable well-known in

the store; process its body and the bodies of each of its lambda subforms in an extended environment

that maps each LHS variable to the corresponding label; and rebuild, using the processed subforms.

For each of the rebuilt lambda subforms, record the corresponding label and the store’s final value of

the corresponding well-known flag. To process a call whose first subexpression is a variable that the

environment maps to a label, process the second subexpression and rebuild the call with the label

in the first position, followed by the variable and the processed second subexpression. To process

any other call, process the subforms and rebuild with ⊥ in the first position. To process a variable

outside of the first position of a call, mark the variable not-well-known in the store. To process a

let or primitive application, process the subforms and rebuild using the processed subforms. No

processing is needed for constants. This process is linear in the size of the code.

The analysis above uncovers known calls only when the name of a λ-expression is in scope at the

point of call. A more precise approximation can be made using a more elaborate form of control-

flow analysis, as described by Serrano [76], or a type recovery that differentiates between individual

procedures, as described by Adams et al. [6].

10For (let (x e1) e2), x cannot appear free in e1, as variables are uniquely named.
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e ::= c
| x
| (let (x e1) e2)
| (letrec ([x1 f1] . . . ) e)
| (call e0 e1)
| (prim e . . . )

f ::= (lambda (x) e)

c ∈ Const , x ∈ Var , prim ∈ Prim,

e ∈ Exp, f ∈ Fun

Figure 5.4. The core inter-
mediate language.

e ::= c
| x
| (let (x e1) e2)
| (letrec ([x1 f1] . . . ) e)
| (call e0 e1)
| (prim e . . . )

f ::= (lambda fvs (x) e)

fvs ∈ P(Var)

Figure 5.5. Intermediate
language after uncovering
free variables.

e ::= c
| x
| (let (x e1) e2)
| (letrec ([x1 f1] . . . ) e)
| (call l? e0 e1)
| (prim e . . . )

f ::= (lambda l wk fvs (x) e)
l? ::= l | ⊥

l ∈ Label , wk ∈ Bool

Figure 5.6. Intermediate
language after uncovering
known calls.

e ::= c
| x
| (let (x e1) e2)
| (scletrec ([x1 f1] . . . ) e)
| (call l? e0 e1)
| (prim e . . . )

f ::= (lambda l wk fvs (x) e)
l? ::= l | ⊥

Figure 5.7. Intermediate
language after computing
strongly connected sets.

e ::= c
| x
| (let (x e1) e2)
| (scletrec (([x1 f1] . . . ) . . . ) e)
| (call l? e0 e1)
| (prim e . . . )

f ::= (lambda l wk fvs (x) e)
l? ::= l | ⊥

Figure 5.8. Intermediate
language after choosing
subsets for sharing.

e ::= c
| x
| l
| (let (x e1) e2)
| (labels ([l1 f1] . . . ) e)
| (call l? e0? e1)
| (prim e . . . )

f ::= (lambda cp?(x) e)
l? ::= l | ⊥
e? ::= e | ⊥

cp? ::= cp | ⊥
cp ∈ Var

Figure 5.9. Final output
intermediate language.

5.3.2. Partitioning bindings into strongly connected sets. The next step in the algorithm is

to determine sets of bindings that we can prove have the same lifetimes, as these are the ones that

can potentially share closures without leading to space safety issues. As discussed in Section 5.2.3,
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(make-closure code length)
(closure-set! closure index value)

(closure-ref closure index)
(vector e ...)

(vector-ref vector index)
(cons e1 e2)
(car pair)
(cdr pair)

Figure 5.10. Closure-related primitives.

proving that two or more procedures have the same lifetime is difficult in general, so we use a

conservative approximation, which assumes the same lifetime only for members of each set of bindings

that are strongly connected [86] in a graph of bindings linked by free-variable relationships. In

determining strongly connected sets of letrec bindings, it is sufficient to consider each letrec form

individually, as the bindings of two separate letrec forms can be connected via free-variable links

in, at most, one direction.

Sets of strongly connected letrec bindings are also the minimal sets of closures that must be

allocated and initialized together so that links can be established among them, as described in

Section 5.3.6.

The result of the strongly connected component analysis is a program in the new intermediate

language shown in Figure 5.7, which differs from the language in Figure 5.6 only in that letrec

forms have been replaced with scletrec forms. In general, each letrec form is replaced by one

or more scletrec forms nested so that if the λ-expressions of one scletrec reference bindings of

another scletrec, the first is nested within the second.

If letrec purification has been performed via the algorithm described by Ghuloum and Dybvig [56],

the letrec expressions already have been split into strongly connected sets of bindings, and this

step need not be repeated.

5.3.3. Combining bindings. Once our letrec forms have been split into strongly connected sets

represented by scletrec forms, we are ready to determine the subsets of each set that will share a

single closure.

If our representation allowed closures to have multiple code slots, we could use a single closure for

all of the bindings of the set. Because the representation permits us just one code slot, however, we

must ensure that, at most, a single code pointer is needed by the members of each subset.
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A code pointer is needed only for not-well-known bindings, as a well-known λ-expression is invoked

via its direct-call label. Thus, if there are no not-well-known bindings in the set, no code pointer

is required, and we can group all of the bindings together. This leads eventually to a run-time

representation without any code pointer, as covered by Case 1 of Section 5.2.1.

If there are not-well-known bindings in the set, however, we must have at least one closure for each.

There is no advantage to creating a separate closure for the well-known bindings, so we arrange for

each of the well-known bindings to share a closure with one of the not-well-known bindings. Thus,

we end up with exactly as many subsets as there are not-well-known bindings in the set.

When more than one not-well-known binding exists in a set, it is unclear how to distribute the

well-known bindings among the resulting subsets. If possible, we would like to combine the not-well-

known bindings with well-known bindings in a way that leads to minimizing the total number of free

variables in each closure. However, this situation arises infrequently enough in the programs that

we tested that we were not able to determine a generally useful heuristic, so our algorithm presently

groups all of the well-known bindings in with an arbitrary pick of the not-well-known bindings. This

transformation never does any harm, but it might not be as beneficial as some other combination in

some circumstances.

The output of this step is in the intermediate language shown in Figure 5.8, in which the bindings

of the scletrec are grouped into subsets that will share a single closure.

5.3.4. Determining required free variables. As discussed in Section 5.2.2, we need not include

in our free-variable sets all of the variables that occur free within our λ-expressions. In fact, we

must eliminate any letrec-bound variable that is neither bound nor referenced in the final output

because its closure has been eliminated under Case 1a of Section 5.2.1. We can also eliminate global

variables, variables bound to constants, aliases for other variables already included, self-references,

and unnecessary mutual references.

To eliminate aliases and variables bound to constants, we use an environment that maps variables

to expressions or ⊥ :

ρ ∈ Env = Var → Exp ∪ {⊥}

For the purpose of determining required free variables, the environment need map variables only

to constants, other variables, and ⊥; but we need other expressions when rebuilding the code, as

described in Section 5.3.6.
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If a local variable x is an alias for another variable y, ρ maps x to y. Similarly, if x is bound to a

constant c, ρ maps x to c. If x is unbound in the final output, ρ maps x to ⊥. Otherwise, ρ maps x

to itself.

In our compiler, global variables are distinct from local variables and are referenced and assigned

via static locations embedded in the code stream. Thus, they never appear in our free-variable lists

and, hence, need not be eliminated. If this were not the case, we could recognize the case where ρ

does not contain a mapping for a variable and treat it as global.

We construct the environment and determine the required free variables via an outermost to inner-

most traversal of the input program, starting with an empty environment and augmenting it when

we encounter a let or scletrec. For (let (x e1) e2), the environment ρ′ used while processing e2

is the result of augmenting ρ, as follows:

• if e1 is a variable y, ρ′x = ρy;

• if e1 is a constant c, ρ′x = c;

• otherwise, ρ′x = x.

In the first case, ρ′ maps x to ρy rather than to y because y might itself be an alias, bound to a

constant, or unbound.

For scletrec, we select representations as described in the following section and augment the

environment used while processing the lambda and letrec bodies, based on the representations

selected, as follows.

• if a letrec-bound variable x is not needed because its closure has been eliminated, ρ′x = ⊥;

• if the closure for x is a constant closure c, i.e., one containing just a code pointer, ρ′x = c;

• if the closure for x is just the value of the free variable y, ρ′x = y;

• similarly, if the closure (or other data structure) for x is shared with a closure to which another

variable y has been bound, ρ′x = y;

• otherwise, ρ′x = x.

Because the traversal proceeds from outermost to innermost, by the time it is ready to process a

given scletrec form, information about the free variables of its λ-expressions, except those bound

by the scletrec form itself, is available in the environment. We optimistically assume that none

of the variables bound by the scletrec form is needed until we have proved otherwise. Thus, we

compute initial free-variable sets for each group of bindings based only on free variables that are

not bound by the current scletrec form, using the environment to eliminate unbound variables,

constants, and aliases.

137



5. CLOSURE OPTIMIZATION

To be precise, if a variable x ∈ fvs for any fvs among the λ-expressions of one group of bindings of

an scletrec, ρx is included in the initial free-variable set of the group if and only if ρx is a variable.

This effectively omits unbound variables and variables bound to constants. It also eliminates aliases

because, if the environment maps x and y to z (where z might be x, y, or some variable distinct

from x and y), only z appears in the resulting set.

We must still decide which of the variables bound by the current scletrec must be included in the

free-variable sets of each group. At most, one variable bound by each group needs to be included,

as each of the variables will be bound to the same closure (if any). Thus, we pick an arbitrary

representative variable rep from the set of variables bound by each group and decide whether to

include it in the free-variable sets of the others.

We never include rep in the free-variable set of its own group, effectively eliminating self-references

(Case 5 of Section 5.2.2). If all of the initial free-variable sets are empty, no representatives are

added, and the final free-variable sets are also empty. This effectively eliminates unnecessary mutual

references (Case 5 of Section 5.2.2).

If, however, the free-variable set of any group is non-empty, we must add the representative rep of

each group G to the free-variable set of each other group H if G has a non-empty set of free variables

and rep ∈ fvs for some fvs among the λ-expressions of H. Each group must have at least one of

the other representatives in one or more fvs, so in this case, each of the final free-variable sets is

non-empty.

The products of this step are the final free-variable sets, one for each group of bindings of a single

scletrec form. The selected representative rep for each group must also be communicated to the

next step.

5.3.5. Selecting representations. Once we have the final set of free variables for each group,

we are ready to decide how each group’s closure is represented. This step is performed for each

scletrec during the outermost to innermost traversal of the program, described in Section 5.3.4.

For each group in an scletrec, we select the representation determined by the cases in Section 5.2.1

as follows:

Case 1a: Well-known with no free variables

Because we have opted to combine all well-known bindings with a not-well-known binding if one

exists, this case and the other well-known cases occur only if there is a single group whose λ-

expressions are all well-known.
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In this case, no closure is needed, and ρ′ maps rep and the other variables bound by the group to ⊥.

Case 1b: Well-known with one free variable x

In this case, the closure is just the value of x , and ρ′ maps rep and the other variables bound by the

group to x .

Case 1c: Well-known with two free variables x and y

In this case, the closure is a run-time allocated pair that contains the values of x and y . ρ′ maps

each of the variables bound by the group to rep, and code to create the pair and bind rep to the

pair is generated as described in Section 5.3.6.

Case 1d: Well-known with three or more free variables x ...

In this case, the closure is a run-time allocated vector that contains the values of x .... ρ′ maps

each of the variables bound by the group to rep, and code to create the vector and bind rep to the

vector is generated as described in Section 5.3.6.

Case 2a: Not-well-known with no free variables

In this case, the closure is a constant closure c that contains just a code pointer, and ρ′ maps rep

and the other variables bound by the group to c.

Case 2b: Not-well-known with one or more free variables x ...

In this case, the closure is a run-time allocated closure whose code pointer is the label of the single

not-well-known binding in the group, and its free-variable slots hold the values of x .... ρ′ maps

each of the variables bound by the group to rep, and code to produce the closure and bind rep to

the closure is generated, as described in Section 5.3.6.

In cases 1c and 1d, we have a further opportunity to share closures, which is to locate a binding

created by an outer scletrec that would have exactly the same set of free variables if the pair or

vector were shared. For example, an outer closure might be represented as a pair with free variables

x and y. If the new closure also has just x and y as free variables, there is no harm in borrowing

the pair used for the outer closure. Further, if the new closure has f as a free variable as well as x

and y, it can still use the outer pair, as f becomes a self-reference and, hence, is not needed.

To implement this form of sharing, the algorithm maintains an additional compile-time environment,

bank, that maps sets of free variables to the representative variables of closures available to be

borrowed. We deposit into bank only closures represented as pairs or vectors, as we cannot borrow
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a closure with a code pointer without possibly retaining the code pointer too long, as described

in Section 5.2.3. For any well-known procedure with more than one free variable, we check to see

whether a closure with a compatible set of free variables already exists in bank and, if so, map rep

and the other variables bound by the group to the representative variable of the borrowed closure.

While processing the body of a λ-expression, we withdraw from bank those closures whose names do

not appear free in the λ-expression, as they are not visible in the body.

5.3.6. Rebuilding the code. The final step of the algorithm is to produce the output code. This

step is performed for each scletrec during the traversal of the code described in Section 5.3.4, based

on the decisions made in Section 5.3.5. The intermediate language for the final output is shown in

Figure 5.9 and may require some or all of the primitive operations shown in Figure 5.10. Producing

the output code involves:

• generating a labels form to bind labels to lambda expressions,

• adding a closure-pointer (cp) variable to each λ-expression that requires its closure,

• rewriting variable references, and

• generating code to create the required pairs, vectors, and closures.

The generated labels form binds the label associated with each λ-expression in each group of the

scletrec form to the corresponding λ-expression. Although the labels form appears where the

scletrec form originally appeared, the scope of each label is the entire input program, so that any

call can jump directly to the code produced by the corresponding λ-expression. In fact, because the

resulting λ-expressions access their free variables, if any, through an explicit closure argument, all

labels forms and the λ-expressions within them can be moved to the top level of the program as

part of this or some later transformation, if desired.

If a λ-expression has any free variables, it is given a closure-pointer (cp) variable; when code is

ultimately generated for the λ-expression, cp must be assigned to the incoming closure (or pair or

vector), just as the formal parameter x is assigned to the incoming actual parameter. In essence, cp

is merely an additional formal parameter, and the closure is merely an additional actual parameter.

Each reference to a free variable within a λ-expression must be replaced by an expression to retrieve

the value of the free variable from the closure. Similarly, a reference to a variable bound to a

constant must be replaced by the constant, a reference to a variable bound to another variable

must be replaced by a reference to the other variable, and references to unbound variables must

be eliminated. Sufficient information already exists in the incoming environment ρ to handle the

latter set of cases, where each reference to a variable x is simply replaced during the outermost to
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innermost traversal by ρx. Unbound variables arise only from well-known procedures and can thus

appear only in the second (closure) position of a call and only when the call’s label is not ⊥.

When this happens, the variable maps to ⊥, and the reference to the variable is replaced in the call

by ⊥, which frees the caller from passing any sort of closure to the callee.

To handle free variables, ρ is augmented to create an environment ρ′, as follows:

• for a self-reference x, ρ′x = cp;

• for a procedure represented by one of its free variables x, ρ′x = cp;

• for a procedure represented by a pair of x and y, ρ′x = (car cp), and ρ′y = (cdr cp);

• for a procedure represented by a vector of x1 . . . xn, ρ′xi = (vector-ref cp i) for 0 ≤ i < n;

• for a procedure represented by a closure of x1 . . . xn, ρ′xi = (closure-ref cp i) for 0 ≤ i < n.

The augmented environment ρ′ is used while processing the body of each lambda form as well as the

body of the scletrec form, as references to the letrec-bound variables can occur in both contexts.

Generating code to create the required pairs, vectors, and closures is straightforward, with one

minor twist. Because the links among the non-constant closures created for the set of groups in an

scletrec necessarily form one or more cycles, the code to create them allocates all of the closures

before storing the values of the free variables. For example, if an scletrec form with body e has two

groups, one with representative r1, label l1, and free variables r2 and y ; and one with representative

r2, label l2, and free variable r1; the scletrec form is replaced with the following:

(let ([r1 (make-closure l1 2)] [r2 (make-closure l2 1)])

(closure-set! r1 0 r2)
(closure-set! r1 1 y)

(closure-set! r2 0 r1)
e)

The order of the bindings and the order of the closure-set! forms do not matter.

5.4. Results

Our implementation extends the algorithm described in Section 5.3 to support the full R6RS Scheme

language [83]. To determine the effectiveness of closure optimization, we ran the optimization over

a standard set of 67 R6RS benchmarks [26] and instrumented the compiler and resulting machine

code to determine:

• statically,

– the number of closures eliminated and
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– the reduction in the total number of free variables; and

• dynamically,

– the reduction in allocation cost and

– the reduction in the number of memory references.

Overall, the optimization performs well, on average statically eliminating 56.94% of closures and

44.89% of the total free variables, and dynamically eliminating, on average, 58.25% of the allocation

and 58.58% of the memory references attributable to closure access.11

These numbers are gathered after a pass that performs aggressive inlining, constant propagation,

constant folding, and copy propagation [90]. It also follows a pass that recognizes loops and converts

them into the equivalent of labels and gotos. As a result, the numbers do not include the benefits

of eliminating variables bound to constants or other variables, except where these situations arise

during closure optimization. Inlining and loop recognition also eliminate the need for some closures

and can affect the number of free variables (potentially increasing this number in some cases and

decreasing it in others). Global variables are not counted as free variables, as they are stored at a

fixed location and accessed via primitives that set or retrieve their values.

Constant closures and those replaced by a single free variable are considered eliminated in our

numbers, as neither incurs run-time overhead. In counting the allocation of vectors and closures, we

include the space required for the length (in the case of vectors) and the code pointer (in the case

of closures), as well as the space required to hold the free-variable values.12

In addition to the overall numbers, we ran, in isolation, optimizations that eliminate self-references,

eliminate mutual references, share closures in strongly connected sets of bindings, borrow closures

from outer sets of bindings, and select more efficient representations. Table 5.1 shows the break-

down in the percentage of eliminated closures, free variables, memory references, and allocation by

optimization. The table shows that running the optimizations together results in greater benefits

than does running the optimizations separately. This is because some of the optimizations can lead

to opportunities for the others.

The results for the complete set of benchmarks are impressive but vary from benchmark to bench-

mark. Some of the benchmarks are simpler benchmarks for running functions such as factorial,

Tak, and Fibonacci. It is interesting to see how much these benchmarks benefit from the closure

11The percentage of memory stores attributable to closure initialization also decreases in direct proportion with the

reduction in allocation.
12The numbers do not include pad words required to maintain object alignment, e.g., double-word alignment on 32-bit

machines.
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Table 5.1. Eliminated closures (Closure), free-variables (FV), memory references
(Mem. Ref.), and allocation (Alloc.) by closure optimization type.

Optimization Closure FV Mem. Ref. Alloc.
Self-ref. 0.00% 25.41% 45.64% 19.33%
Mutual-ref. 0.00% 7.91% 32.55% 6.14%
Representation 29.65% 3.48% 1.23% 20.78%
Sharing 1.91% 3.17% 0.00% 0.58%
Borrowing 0.20% 0.28% 0.00% 0.02%
All 56.94% 44.89% 58.58% 58.25%

optimization, but, ultimately, the larger programs within the benchmark suite help to provide a

better indicator of how well these optimizations will work on real-world programs. The R6RS “com-

piler” benchmark is the largest in terms of source code and has the most closures initially. Statically,

40.85% of closures and 31.9% of free variables are eliminated, and, dynamically, 31.52% of the alloca-

tion and 27.59% of the memory references attributable to closure creation and access are eliminated.

This example might be more typical of the average real-world program.

The R6RS “simplex” benchmark is an example of a benchmark that does not benefit much from

our closure optimization, eliminating, statically, only 8.00% of the closures and 14.97% of free vari-

ables, while eliminating, dynamically, 13.96% of the allocation and 9.84% of the memory references

attributable to closure creation and access. The benchmark is written as a set of functions that

mutate data structures pointed to from free variables. Because most of the free variables are not

other closures (and some that are have already been inlined by the source optimization pass), there

are not many closures that can be eliminated.

The R6RS “nucleic” benchmark is an example of a longer benchmark that performs better than

average, eliminating 67.74% of the closures and 66.23% of the free variables statically, and 37.43%

of the allocation and 72.69% of the memory references attributable to closure creation and access at

run time. This benchmark has many top-level definitions that are either λ-expressions or constants,

so the free variables tend to be other closures. Although data structures are also mutated here, they

tend to be passed as arguments rather than stored as free variables in the closure. In a program

such as this, we expect to see many of the closures eliminated.

In addition to testing the performance of the benchmarks, we also measured the effectiveness of the

optimization algorithm when run on the sources for our own compiler. Statically, 45.67% of closures

and 32.36% of free variables are eliminated, and, dynamically, 47.52% of the allocation and 47.00%

of the memory references attributable to closure creation and access are eliminated.
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We also measured how our optimizations affected the run times of our benchmarks. The decrease in

run times ranged from negligible up to 20%, with an average decrease of 3.6%. Run times actually

increased for a few of the benchmarks. Because our optimizations are supposedly guaranteed to not

add overhead, we examined one of those whose run time increased and determined that its poor

performance was due to bad caching. Rearranging the code led to equivalent performance between

the optimized and unoptimized versions of the code. Several of the benchmarks spend most of their

time in procedures recognized as loops earlier and do not benefit at all from the closure optimization.

Larger programs tended to experience greater improvement in run time, which correlates well with

the other measurements. Memory allocation in our implementation is fast, averaging around three

instructions, plus one store to initialize each field. For implementations with slower or even out-

of-line allocation, the decrease in run time due to reduction in closure allocation would be greater.

Similarly, implementations that do not perform inlining or loop recognition would likely benefit more

from the optimizations. In comparison, systems with higher overhead in other places would likely

benefit less.

Case 1 of Section 5.2.3 presents the possibility of extending our implementation to support multiple

code pointers so that all of the bindings of a strongly connected set of bindings can share the same

closure, even if more than one is not well-known. Because making this change to our system would

be a major undertaking, we decided to determine the potential benefit of the optimization before

proceeding. Our test showed that this optimization would affect less than one-tenth of one percent

of letrec bindings, which led us to abandon the idea.

Our implementation of the optimization algorithm employs standard techniques to avoid the implied

overhead of creating and updating the sets required by the algorithm. For example, it associates

a seen flag with each variable to indicate when a free variable has already been added to a set.

Although we have yet to create a proof, we believe that the implementation is linear in the number

of variables free in all λ-expressions in the program, which is the best that any implementation of

the flat-closure model can achieve.13 In other words, our implementation adds, at most, constant

overhead to the naive flat-closure model and can sometimes improve the speed of downstream passes

via the elimination of closure operations. Indeed, the optimization adds essentially no measurable

compile-time overhead in our compiler, with compile times varying by an average of less than 1%

with the optimization disabled or enabled.

13In the worst case, the number of such free variables is quadratic in the size of the program [78], although the worst

case appears to be approached rarely in practice.
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5.5. Related Work

Our replacement of a well-known closure with a single free variable is a degenerate form of lambda

lifting [62], in which each of the free variables of a procedure are converted into separate arguments.

Increasing the number of arguments can lead to additional stack traffic, particularly for non-tail-

recursive routines, and it can increase register pressure whenever two or more variables are live in

place of the original single package (closure) with two or more slots. Limiting our algorithm to doing

this replacement only in the single-variable case never does any harm, as we are replacing a single

package of values with just one value.

Serrano [76] describes a closure optimization based on control-flow analysis [80]. His optimization

eliminates the code part of a closure when the closure is well-known; in this, our optimizations

overlap, although our benefit is less, as the code part of a closure in his implementation occupies

four words, while ours occupies just one. He also performs lambda lifting when the closure is

well-known and its binding is in scope wherever it is called.

Steckler and Wand [84] describe a closure-conversion algorithm that creates “light-weight closures”

that do not contain free variables that are available at the call site. This is a limited form of lambda

lifting and, as with full lambda lifting, can sometimes do harm relative to the straight flat-closure

model.

Kranz [65] describes various mechanisms for reducing closure allocation and access costs, including

allocating closures on the stack and allocating closures in registers. The former is useful for closures

created to represent continuations in an implementation that uses a continuation-passing style [57]

and achieves part of the benefit of the natural reuse of stack frames in a direct-style implementation.

The latter is useful for procedures that act as loops and reduces the need to handle loops explicitly

in the compiler. Our optimizations are orthogonal to these optimizations, but they do overlap

somewhat in their benefits.

Shao and Appel [78] describe a nested representation of closures that can reduce the amount of

storage required for a set of closures that share some but not all free variables, while maintaining

space safety. The sharing never results in more than one level of indirection to obtain the value

of a free variable. Because a substantial portion of the savings reported resulted from global vari-

ables [9], which we omit entirely, and we operate under the assumption that free-variable references

are typically far more common than closure creation, we have chosen to stick with the flat-closure

model and focus instead on optimizing that model.

145



5. CLOSURE OPTIMIZATION

Fradet and Métayer [46] describe various optimizations for implementations of lazy languages. They

discuss reducing the size of a closure by omitting portions of the environment not needed by a

procedure, which is an inherent feature of the flat-closure model preserved by our mechanism. They

also discuss avoiding the creation of multiple closures when expressions are deferred by the lazy-

evaluation mechanism in cases where a closure’s environment, or portions of it, can be reused when

the evaluation of one expression provably precedes another, i.e., when the lifetime of one closure

ends before the lifetime of another begins.

Dragoş [29] describes a set of optimizations aimed at reducing the overhead of higher-order functions

in Scala. A closure elimination optimization is included that attempts to determine when free

variables are available at the call site or on the stack to avoid creating a larger class structure

around the function. The optimization also looks for heap-allocated free variables that are reachable

from local variables or the stack to avoid adding them to the closure. The optimization helps

eliminate the closures for well-known calls by lambda lifting, if possible.

Appel [11] describes eliminating self-references and allowing mutually recursive functions (strongly

connected sets of letrec bindings) to share a single closure with multiple code pointers. These

optimizations are similar to our elimination of self-references and sharing of well-known closures,

although in our optimization we allow only one not-well-known closure in a shared closure.

A few of the optimizations described in this chapter have been performed by Chez Scheme since

1992: elimination of self-references, elimination of mutual references where legitimate, and allocation

of constant closures (though without the propagation of those constants). Additionally, we have seen

references, in various newsgroups and blogs, to the existence of similar optimizations. While other

systems may implement some of the optimizations that we describe, there is no mention of them, or

an algorithm to implement them, in the literature.

5.6. Conclusion

The flat-closure model is a simple and efficient representation for procedures that allows the values

or locations of free variables to be accessed with a single memory reference. This chapter presented

a set of flat-closure compiler optimizations and an algorithm for implementing them. Together, the

optimizations result in an average reduction in run-time closure-creation and free-variable access

overhead on a set of standard benchmarks by over 50%, with insignificant compile-time overhead.

The optimizations never add overhead, so a programmer can safely assume that a program will

perform at least as well with the optimizations as with a naive implementation of flat closures.
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CHAPTER 6

Conclusion and Future Work

When a micropass compiler was first conceived as a teaching aid in a compiler class, the idea of a

compiler as a set of small, single-task passes was seen as too slow for use in a commercial compiler.

Indeed, the class compiler, which handles a small subset of Scheme, slows down significantly as the

number of passes increases. This slow down results from the overhead of matching and rebuilding

the S-expressions used to represent the program being compiled. A compiler can take a noticeable

amount of time to complete, even when compiling relatively small programs. Passes in the class

compiler do not check that their output is well-formed, which creates the potential for a pass to

generate a malformed intermediate representation that is not caught until a later pass. Passes also

contain boilerplate code to traverse forms that do not otherwise change in the pass, burdening the

student with the need to write more code.

The prototype nanopass framework developed by Sarkar demonstrated that it was possible to im-

prove on this model, while maintaining the simplicity of working with an S-expression syntax. Her

dissertation demonstrated that the define-language and define-pass forms could be used in con-

cert to create more efficient passes that use less code. The passes also have the benefit of verifying

that the output of each pass is a valid language form, without the need for any additional verifica-

tion pass. The prototype is not up to the task of writing a commercial compiler. Nevertheless, the

prototype laid the important groundwork that made this dissertation possible.

We set out with the goal of demonstrating that a suitably improved nanopass framework could

be used to build a commercial compiler by building a new compiler that is compatible with the

commercial Chez Scheme compiler, that generates code that is on par with that compiler, and

runs within a factor of two of that compiler. The extra compile time reflects the fact that the

original compiler is almost absurdly fast and allows us to experiment with a substantially slower

graph-coloring register allocator. This goal has been achieved. The new compiler is compatible

with the existing compiler, demonstrated by the fact that it passes the extensive test suite used to

test Chez Scheme. A set of benchmarks performs better, on average, when compiled with the new

compiler than with the original compiler, between 15.0%–26.6% faster depending on architecture
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and optimization level. These numbers include two benchmarks that make use of the new, slower

compiler at run time, which negatively affects the average time. The average compile time of the

benchmarks is well within the factor of two, ranging from a factor of 1.64 on the 32-bit version at

optimize level 3 to 1.75 on the 64-bit version at optimize level 2.

The nanopass framework, in our experience, made developing the new compiler an easier task.

Adding a new form to a language that would last for several passes was made easier by the fact that

the boilerplate code for it could often be autogenerated in the intervening passes. Even in those

passes where the clause could not be autogenerated, it was often possible to predict where and how

the new form would need to be handled by looking at how a similar form was handled. Over the

course of the new compiler’s development, we decided to change the order in which the tasks in

the compiler were performed on several occasions. These changes were not necessarily trivial but

were often simplified by the nanopass framework. When passes were moved, the source (and often

target) language of the pass changed. When this changed in ways that affected the passes, problems

caused by the change were often caught at expand time, when the forms of a pattern or template

could not be met, or early in the run-time testing, when a pass received a language form from the

wrong language. The improved error messages in the new nanopass framework helped to make these

problems easier to find and fix.

The library-group form, described in Chapter 4, was developed before the front-end passes were

rewritten to use the nanopass framework. Because earlier versions of the new compiler used the

same front-end code, this remained unchanged until recently, when the expander was rewritten

to use a nanopass language as the first intermediate representation. As the compiler processes the

library-group form, it traverses the internal representation of the combined library form, replacing

references to library globals for libraries included in the library group with local references. The

original pass performing this traversal listed all of the forms used in the internal representation at

that point in the compiler, but the rewritten pass only needs to look for the one form that changes

and requires only one clause, with the other clauses being autogenerated. The original pass also had

a bug resulting from the addition of forms when the implicit cross-library optimization was added.

Now that the pass is implemented using the nanopass framework, the autogeneration of clauses

ensures that changes to the intermediate language will not result in bugs.

The closure optimization, described in Chapter 5, is a good example of how causing a pass to perform

a single task can make implementing the pass simpler and change the way the compiler writer thinks

about the pass. When we started writing the closure optimization, our intention was to support

148



6. CONCLUSION AND FUTURE WORK

exactly the same features as those of the original compiler. In the original compiler, the work of

closure optimization is spread among several passes, where the individual tasks are intermixed with

several other optimizations and other transformations. Looking at the pass as a whole enabled

us to start to pick away at the algorithm, both simplifying it and finding new opportunities for

optimization. The mechanisms for combining multiple closures with the same lifetime into a single

closure and borrowing closures created for another well-known procedure when the free variables

are the same in both came out of this process. Combining closures simplified the task of removing

mutual references from the free-variable lists.

No sophisticated tool is ever quite done. The more we have used and improved the nanopass

framework, the more places we have found where the nanopass framework should be able to intuit

the programmer’s intentions and where more expressive power could allow the nanopass framework

to further simplify the implementation of passes. With that said, however, the current version of

the nanopass framework stands up to the task that we originally intended for it. It allowed us to

build a new compiler, in roughly a year and a half, that is fully compatible with the existing Chez

Scheme compiler. The new compiler is easier to work with because the intermediate languages used

in the compiler are formally specified, and the task of each pass is clear. Adding new optimizations

is simpler, as it is no longer necessary to try to weave them into existing passes that are already

performing several other tasks.

Although the nanopass framework described in this dissertation is capable of being used in a com-

mercial compiler, there are still improvements to be made, in terms of both performance and func-

tionality. The section below presents future directions for this work.

Better determination of when a pattern is covered. In the current version of the nanopass

framework, a production of a nonterminal is considered covered if a user-supplied clause matches the

production pattern, without restrictions on any of the elements of the pattern and without a guard

clause. This is sufficient in the vast majority of cases, but some intermediate languages contain

a nonterminal with a single production, and it is often useful to match this single production as

part of a larger pattern that contains the production. In these cases, define-pass generates a

clause to handle the “most general” case. The clause is not reachable, as the user-supplied clause

matches all possible forms, but it can cause define-pass to generate an entire shadow set of

unreachable transformers. By checking nonterminal productions to see whether all cases are met

before autogenerating a clause, generating this unreachable code could be avoided. In cases where
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only a single production is valid as a sub-form, it would is also possible to avoid performing the test

to make sure this form is found, since it is the only form that is possible.

Better autogeneration of transformers. Transformer autogeneration is intended to remove

more of the boilerplate code from pass definitions and to allow the compiler writer to focus on

the forms that need to be transformed. Unfortunately, transformer autogeneration can also lead

to unexpected results. This can happen because the compiler writer missed a production in a

nonterminal that needed to be handled, supplied an incorrect number of bindings in a catamorphism,

or wrote an intermediate transformer that did not include all of the extra formals or return values

needed for autogeneration of a recursive clause. This kind of bug can be difficult to track down,

as it tends to raise errors at the run time of the compiler and not during the expansion of the

compiler. The autogeneration of transformers is also limited to constructing transformers that take

an input-language form as the only argument and produce only an output-language form. This

avoids autogenerating a transformer that would have difficulty knowing how to handle extra formals

or automatically generating extra return values. In developing the new Chez Scheme compiler, we

found a desire for both more control of autogeneration for the user and a more general heuristic for

determining when it is appropriate to autogenerate a transformer and when it is not.

To address the problem of autogenerated clauses appearing when they are not wanted, an optional

clause could be added to define-pass to disable transformer autogeneration when it is not desired.

This could be helpful as a debugging device, allowing the compiler writer to see missing transformers,

and, more generally, when transformers are generated as the result of a pattern that does not seem

to be matched, even though the user-supplied clauses had covered all of the productions.

To provide a more general autogeneration heuristic, autogenerated transformers could be allowed

to take extra formals, particularly when there is a nonterminal production with a user-supplied

transformer that expects the extra formal. Transformers that return no values could also be auto-

generated to traverse the full language term when an effect-only transformer exists, without requiring

the compiler writer to explicitly specify the recursion.

Polymorphic languages. Each language defined by define-language generates a distinct record

for each S-expression production of each nonterminal. This means that no two languages ever share

the same record types, even though they may share the same S-expression production in the same

nonterminal. As a result, every pass in the compiler that uses different input and output languages

must rewrite every nonterminal production in the language to produce a well-formed output. This

is good for the checking that it provides, but, in some cases, particularly those where the majority
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of the forms in the language do not need to be rewritten, such as the frame allocation and register

allocation passes of the class compiler, this rewriting can lead to poor performance both due to the

extra allocation of the new forms and due to the need to perform the work of building them.

One way around this is to allow languages with similar forms to use the same record to represent

those forms. This also requires changes to the define-pass implementation, which would need to

avoid generating clauses that traverse forms that do not need to be rewritten. This is also a feature

that should be under the compiler writer’s control, as, in some cases, it might be desirable to ensure

a complete rewrite of the language term to provide the same sort of checking that exists in the

current nanopass framework.

Flow-sensitive languages and passes. Automatically generated clauses in the nanopass frame-

work visit the components of a language term in a flow-insensitive manner. This means that the

extra return values from recursive calls on a sub-form will be lost in an autogenerated clause. It

also means that if a formal is updated based on the output of a pass, for instance, an environment

is updated while processing a sub-form, this, too, will be lost. Hence, in passes that require flow-

sensitive traversal of language terms, the compiler writer is responsible for specifying the order of

the traversal by writing clauses that match each language form that contains sub-forms that are

affected by the flow-sensitive traversal.

In developing the new Chez Scheme compiler, we found that this led to many boilerplate clauses that

simply recur on their sub-forms in the order required by the traversal and rebuild a matching output

term. Avoiding this kind of boilerplate clause is one of the intentions of the nanopass framework, and

by informing the define-pass clause of the traversal order, it should be possible to automatically

generate these clauses as well. This is not as simple as specifying a tree traversal, however, because

some of the intermediate languages in Chez Scheme include labels and gotos. This means that the

control flow of a program is not structured as a tree, or even a DAG, but might contain cycles. This

requires that the language form itself carries some information about how control flow is handled as

a means to give define-pass the information that it needs to autogenerate clauses and processors.

Pass fusing. While the compile time of many compilers is driven by individual passes with high

computational complexity, such as live analysis, having many individual passes does add some con-

stant overhead. One way to mitigate this, while still using the nanopass approach, is to fuse multiple

passes together when the passes can be run simultaneously. This avoids the creation of intermediate

language representations and executes several passes in a single walk over the intermediate program

term.
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There are a number of challenges in fusing passes. The nanopass framework does not restrict the

language that can be used in the right-hand side of a transformer clause, so compiler writers can

use side-effecting operations that could lead to semantic changes when two passes are fused. This

means that some non-trivial analysis is needed to determine when two passes can be fused. This

can be difficult in the expander, as it requires a code walk. Even with the code walk, the expander

would need to verify each identifier referenced in the passes to be fused to ensure no side-effects

could occur that would prevent combining the passes.

Another option is to allow the compiler writer to specify when two passes should be fused. This

removes the burden of analyzing the passes from the nanopass framework (and imposes it on the

compiler writer). Even this is challenging, however. Pass fusion is a form of deforestation [94] where

passes are composed to eliminate creation of intermediate language terms. Because the nanopass

framework allows language terms to be constructed outside of the right-hand side of a pass, it might

not be possible to determine, in all cases, what output term will be constructed as the output of

the pass. Given these caveats, it is still possible that pass fusion could be useful. This might be

implemented as an additional macro or as an optional instruction to the define-pass form that

indicates that a given set of passes is part of the same fused pass.
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